Skip to main content
Log in

Trichotomous Noise Induced Resonance Behavior for a Fractional Oscillator with Random Mass

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the stochastic resonance (SR) phenomenon in a fractional oscillator with random mass under the external periodic force. The fluctuations of the mass are modeled as a trichotomous noise. Applying the Shapiro–Loginov formula and the Laplace transform technique, we obtain the exact expression of the first moment of the system. The non-monotonic behaviors of the spectral amplification (SPA) versus the driving frequency indicate that the bona fide SR appears. The necessary and sufficient conditions for the emergence of the generalized stochastic resonance phenomena on the noise flatness and on the noise intensity in the particular case of \(\Omega =\omega _0 ,v\rightarrow 0\) are established. Particularly, the hypersensitive response of the SPA to the noise intensity is found, which is previously reported and believed to be absent in the case of dichotomous noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gitterman, M., Shapiro, I.: Stochastic resonance in a harmonic oscillator with random mass subject to asymmetric dichotomous noise. J. Stat. Phys. 144, 139–149 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Klafter, J., Sokolov, I.M.: Anomalous diffusion spreads its wings. Phys. World 18, 29–32 (2005)

    Google Scholar 

  3. Goychuk, I.: Subdiffusive Brownian ratchets rocked by a periodic force. Chem. Phys. 375, 450–457 (2010)

    Article  ADS  Google Scholar 

  4. Metzler, R., Barkai, E., Klafter, J.: Deriving fractional Fokker–Planck equations from a generalized master equation. Europhys. Lett. 46, 431–436 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Lutz, E.: Fractional Langevin equation. Phys. Rev. E 64, 051106 (2001)

    Article  ADS  Google Scholar 

  8. Burov, S., Barkai, E.: Critical exponent of the fractional Langevin equation. Phys. Rev. Lett. 100, 070601 (2008)

    Article  ADS  Google Scholar 

  9. Deng, W.H., Barkai, E.: Ergodic properties of fractional Brownian–Langevin motion. Phys. Rev. E 79, 011112 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Jeon, J.H., Metzler, R.: Inequivalence of time and ensemble averages in ergodic systems: exponential versus power-law relaxation in confinement. Phys. Rev. E 85, 021147 (2012)

    Article  ADS  Google Scholar 

  11. Kneller, G.R., Baczynski, K., Pasenkiewicz-Gierula, M.: Communication: consistent picture of lateral subdiffusion in lipid bilayers: molecular dynamics simulation and exact results. J. Chem. Phys. 135, 141105 (2011)

    Article  ADS  Google Scholar 

  12. Jeon, J.H., Leijnse, N., Oddershede, L.B., Metzler, R.: Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions. New J. Phys. 15, 045011 (2013)

    Article  ADS  Google Scholar 

  13. Zhong, S.C., Wei, K., Gao, S.L., Ma, H.: Stochastic resonance in a linear fractional Langevin equation. J. Stat. Phys. 150, 867–880 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Lizana, L., Ambjörnsson, T., Taloni, A., Barkai, E., Lomholt, M.A.: Foundation of fractional Langevin equation: harmonization of a many-body problem. Phys. Rev. E 81, 051118 (2010)

    Article  ADS  Google Scholar 

  15. Kou, S.C., Xie, X.S.: Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, 180603 (2004)

    Article  ADS  Google Scholar 

  16. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Jeon, J.H., Metzler, R.: Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E 81, 021103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  19. Kubo, R.: The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)

    Article  ADS  Google Scholar 

  20. Rekker, A., Mankin, R.: Energetic instability of a fractional oscillator. WSEAS Trans. Syst. 9, 203–212 (2010)

    Google Scholar 

  21. Mason, T.G., Weitz, D.A.: Optical measurements of the linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250–1253 (1995)

    Article  ADS  Google Scholar 

  22. Guigas, G., Kalla, C., Weiss, M.: Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys. J. 93, 316–323 (2007)

    Article  ADS  Google Scholar 

  23. Gotze, W., Sjogren, L.: Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241 (1992)

    Article  ADS  Google Scholar 

  24. Gu, Q., Schiff, E.A.: Non-Gaussian transport measurements and the Einstein relation in amorphous silicon. Phys. Rev. Lett. 76, 3196–3199 (1996)

    Article  ADS  Google Scholar 

  25. Soika, E., Mankin, R., Lumi, N.: Parametric resonance of a harmonic oscillator with fluctuating mass. AIP Conference Proceedings, p. 233. AIP, New York (2012)

    Google Scholar 

  26. Gitterman, M.: New type of Brownian motion. J. Stat. Phys. 146, 239–243 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14, L453–457 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  28. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34, 10–16 (1982)

    Article  ADS  Google Scholar 

  29. Nicolis, C.: Stochastic aspects of climatic transitions: response to a periodic forcing. Tellus 34, 1 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  30. Hänggi, P., Inchiosa, M.E., Fogliatti, D., Bulsara, A.R.: Nonlinear stochastic resonance: the saga of anomalous output–input gain. Phys. Rev. E 62, 6155–6163 (2000)

    Article  ADS  Google Scholar 

  31. Mankin, R., Ainsaar, A., Reiter, E.: Trichotomous noise-induced transitions. Phys. Rev. E. 60, 1374 (1999)

    Article  ADS  Google Scholar 

  32. Lang, R.L., Yang, L., Qin, H.L., Di, G.H.: Trichotomous noise induced stochastic resonance in a linear system. Nonlinear Dyn. 69, 1423–1427 (2012)

    Article  MathSciNet  Google Scholar 

  33. Sauga, A., Mankin, R., Ainsaar, A.: AIP Conference Proceedings. Resonant behavior of a fractional oscillator with fluctuating mass, pp. 224–232. AIP, New York (2012)

    Google Scholar 

  34. Soika, E., Mankin, R., Priimets, J.: Generalized Langevin equation with multiplicative trichotomous noise. Proc. Estonian Acad. Sci. 61, 113–127 (2012)

    Article  MATH  Google Scholar 

  35. Shapiro, V.E., Loginov, V.M.: “Formulae of differentiation” and their use for solving stochastic equations. Physica A 91, 563–574 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  36. Laas, K., Mankin, R., Reiter, E.: Stochastic resonance in the case of a generalized Langevin equation with a Mittag–Leffler friction kernel. In: Proceeding MACMESE 10 Proceedings of the 12th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering, pp. 313–318 (2010). ISBN: 978–960-474-243-1

  37. Soika, E., Mankin, R., Priimets, J.: Response of a generalized Langevin system to a multiplicative trichotomous noise. Recent Advances in Fluid Mechanics, Heat and Mass Transfer and Biology, pp. 87–93. World Scientific Publishing Co., Singapore (2011). ISBN: 978–960-474-268-4

    Google Scholar 

  38. Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Signals and Systems. Prentice Hall, Shangai (2005)

    Google Scholar 

  39. Soika, E., Mankin, R., Ainsaar, A.: Resonant behavior of a fractional oscillator with fluctuating frequency. Phys. Rev. E 81, 011141 (2010)

    Article  ADS  Google Scholar 

  40. Gammaitoni, L., Marchesoni, F., Santucci, S.: Stochastic resonance as a bona fide resonance. Phys. Rev. Lett. 74, 1052–1055 (1995)

    Article  ADS  Google Scholar 

  41. Mankin, R., Lass, K., Laas, T., Reiter, E.: Stochastic multiresonance and correlation-time-controlled stability for a harmonic oscillator with fluctuating frequency. Phys. Rev. E. 78, 031120 (2008)

    Article  ADS  Google Scholar 

  42. Gitterman, M.: Classical harmonic oscillator with multiplicative noise. Physica A 352, 309–334 (2005)

    Article  ADS  Google Scholar 

  43. Laas, K., Mankin, R., Rekker, A.: Hypersensitive response of a harmonic oscillator with fluctuating frequency to noise amplitude. In: Proceedings of the 5th WSEAS International Conference on Mathematical Biology and Ecology, pp. 15–20 (2009). ISBN: 978–960-474-038-3

  44. Laas, K., Mankin, R., Rekker, A.: Constructive influence of noise flatness and friction on the resonant behavior of a harmonic oscillator with fluctuating frequency. Phys. Rev. E. 79, 051128 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Program of National Natural Science Foundation of China (Grant number 11171238) and the Young Teacher Fund of Sichuan Uninversity, China (Grant number 2082604174031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suchuan Zhong or Hong Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S., Wei, K., Gao, S. et al. Trichotomous Noise Induced Resonance Behavior for a Fractional Oscillator with Random Mass. J Stat Phys 159, 195–209 (2015). https://doi.org/10.1007/s10955-014-1182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1182-9

Keywords

Navigation