Skip to main content
Log in

Optimal Estimate of the Spectral Gap for the Degenerate Goldstein-Taylor Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

A Correction to this article was published on 14 September 2020

This article has been updated

Abstract

In this paper we study the decay to the equilibrium state for the solution of a generalized version of the Goldstein-Taylor system, posed in the one-dimensional torus \({\mathbb{T}}={\mathbb{R}}/{\mathbb{Z}}\), by allowing that the nonnegative cross section σ can vanish in a subregion \(X:=\{ x \in {\mathbb{T}}\, \vert\, \sigma(x)=0\}\) of the domain with meas (X)≥0 with respect to the Lebesgue measure.

We prove that the solution converges in time, with respect to the strong L 2-topology, to its unique equilibrium with an exponential rate whenever \(\text{meas}\,({\mathbb{T}}\setminus X)\geq0\) and we give an optimal estimate of the spectral gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 14 September 2020

    In [1], on p. 366, line 5 and on p. 369, line 12, replace

References

  1. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernard, É., Salvarani, F.: On the convergence to equilibrium for degenerate transport problems. Arch. Ration. Mech. Anal. 208(3), 977–984 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bernard, É., Salvarani, F.: On the exponential decay to equilibrium of the degenerate linear Boltzmann equation. J. Funct. Anal. 265, 1934–1954 (2013)

    Article  MathSciNet  Google Scholar 

  4. De Vuyst, F., Salvarani, F.: Numerical simulations of degenerate transport problems. J. Comput. Phys. (2013, submitted)

  5. Desvillettes, L., Salvarani, F.: Asymptotic behavior of degenerate linear transport equations. Bull. Sci. Math. 133(8), 848–858 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347(9–10), 511–516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldstein, S.: On diffusion by discontinuous movements, and on the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951)

    Article  MATH  Google Scholar 

  8. Hérau, F.: Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptot. Anal. 46(3–4), 349–359 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mt. J. Math. 4, 497–509 (1974). Reprinting of an article published in 1956, Papers arising from a Conference on Stochastic Differential Equations (Univ. Alberta, Edmonton, Alta., 1972).

    Article  MATH  Google Scholar 

  10. Lebeau, G.: Équations des ondes amorties (1994)

    Google Scholar 

  11. Lions, P.L., Toscani, G.: Diffusive limit for finite velocity Boltzmann kinetic models. Rev. Mat. Iberoam. 13(3), 473–513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mouhot, C., Neumann, L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19(4), 969–998 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  14. Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rauch, J., Taylor, M.: Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Commun. Pure Appl. Math. 28(4), 501–523 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. S2-20(1), 196–212 (1922)

    Article  Google Scholar 

  17. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc., vol. 202(950) (2009). iv+141 pp.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their useful suggestions and comments concerning the paper. This paper has been partially supported by the Italian national institute of higher mathematics (INDAM), GNFM project “Study of complex kinetic systems: theoretical analysis and numerical simulation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Salvarani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, É., Salvarani, F. Optimal Estimate of the Spectral Gap for the Degenerate Goldstein-Taylor Model. J Stat Phys 153, 363–375 (2013). https://doi.org/10.1007/s10955-013-0825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0825-6

Keywords

Navigation