Skip to main content
Log in

Some Partial Results on the Convergence of Loop-Erased Random Walk to SLE(2) in the Natural Parametrization

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We outline a strategy for showing convergence of loop-erased random walk on the \(\mathbb{Z}^{2}\) square lattice to SLE(2), in the supremum norm topology that takes the time parametrization of the curves into account. The discrete curves are parametrized so that the walker moves at a constant speed determined by the lattice spacing, and the SLE(2) curve has the recently introduced natural time parametrization. Our strategy can be seen as an extension of the one used by Lawler, Schramm, and Werner to prove convergence modulo time parametrization. The crucial extra step is showing that the expected occupation measure of the discrete curve, properly renormalized by the chosen time parametrization, converges to the occupation density of the SLE(2) curve, the so-called SLE Green’s function. Although we do not prove this convergence, we rigorously establish some partial results in this direction including a new loop-erased random walk estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Lawler, G.F.: Private communication, 2013.

  2. Beneš, C., Lawler, G.F., Johansson Viklund, F.: In progress, 2013.

  3. Beneš, C., Lawler, G.F., Johansson Viklund, F.: In progress, 2013.

References

  1. Aizenman, M., Burchard, A.: Hölder regularity and dimension bounds for random curves. Duke Math. J. 99, 419–453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alberts, T., Kozdron, M.J., Lawler, G.F.: The Green function for the radial Schramm-Loewner evolution. J. Phys. A: Math. Theor. 45, 494015 (2012)

    Article  MathSciNet  Google Scholar 

  3. Beneš, C., Johansson Viklund, F., Kozdron, M.J.: On the rate of convergence of loop-erased random walk to SLE2. Commun. Math. Phys. 318, 307–354 (2013)

    Article  ADS  MATH  Google Scholar 

  4. Barlow, M.T., Masson, R.: Exponential tail bounds for loop-erased random walk in two dimensions. Ann. Probab. 38, 2379–2417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  6. Dubédat, J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22, 995–1054 (2009)

    Article  MATH  Google Scholar 

  7. Duplantier, B.: Loop-erased self-avoiding walks in two dimensions: exact critical exponents and winding numbers. Physica A 191, 516–522 (1992)

    Article  ADS  Google Scholar 

  8. Garban, C., Pete, G., Schramm, O.: Pivotal, cluster, and interface measures for critical planar percolation. J. Am. Math. Soc. 26, 939–1024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guttmann, A.J., Bursill, R.J.: Critical exponent for the loop erased self-avoiding walk by Monte Carlo methods. J. Stat. Phys. 59, 1–9 (1990)

    Article  ADS  Google Scholar 

  10. Johansson Viklund, F.: Convergence rates for loop-erased random walk and other Loewner curves (2012). arXiv:1205.5734v1 [math.PR]

  11. Kenyon, R.: The asymptotic determinant of the discrete Laplacian. Acta Math. 185, 239–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kenyon, R., Wilson, D.B.: Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on \(\mathbb{Z}^{2}\) (2011). arXiv:1107.3377v1 [math.PR]

  13. Lawler, G.F.: A self-avoiding random walk. Duke Math. J. 47, 655–693 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lawler, G.F.: Intersections of Random Walks. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  15. Lawler, G.F.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  16. Lawler, G.F.: Multifractal analysis of the reverse flow for the Schramm-Loewner evolution. In: Bandt, C., Mörters, P., Zähle, M. (eds.) Fractal Geometry and Stochastics IV. Progress in Probability, vol. 61, pp. 73–107. Birkhäuser, Berlin (2009)

    Chapter  Google Scholar 

  17. Lawler, G.F.: Continuity of radial and two-sided radial SLE κ at the terminal point (2011). arXiv:1104.1620v1 [math.PR]

  18. Lawler, G.F.: The probability that planar loop-erased random walk uses a given edge (2013). arXiv:1301.5331v1 [math.PR]

  19. Lawler, G.F., Rezaei, M.A.: Basic properties of the natural parametrization for the Schramm-Loewner evolution (2012). arXiv:1203.3259v2 [math.PR]

  20. Lawler, G.F., Rezaei, M.A.: Minkowski content and natural parameterization for the Schramm-Loewner evolution (2012). arXiv:1211.4146v1 [math.PR]

  21. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939–995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lawler, G.F., Sheffield, S.: A natural parametrization for the Schramm-Loewner evolution. Ann. Probab. 39, 1896–1937 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lawler, G.F., Zhou, W.: SLE curves and natural parametrization. Ann. Probab. 41, 1556–1584 (2013)

    Article  Google Scholar 

  24. Majumdar, S.N.: Exact fractal dimension of the loop-erased self-avoiding walk in two dimensions. Phys. Rev. Lett. 68, 2329–2331 (1992)

    Article  ADS  Google Scholar 

  25. Masson, R.: The growth exponent for planar loop-erased random walk. Electron. J. Probab. 14, 1012–1073 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. (2) 161, 883–924 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Banff International Research Station for Mathematical Innovation and Discovery (BIRS), the Mathematical Sciences Research Institute (MSRI), and the Simons Center for Geometry and Physics where much of this work was carried out. In particular, the authors benefitted from participating in a Research in Teams at BIRS, as well as the Program on Random Spatial Processes at MSRI, and the Program on Conformal Geometry at the Simons Center. Thanks are owed to Ed Perkins, Martin Barlow, and Greg Lawler for useful discussions, and to three anonymous referees for several valuable comments. The research of the first two authors was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Kozdron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberts, T., Kozdron, M.J. & Masson, R. Some Partial Results on the Convergence of Loop-Erased Random Walk to SLE(2) in the Natural Parametrization. J Stat Phys 153, 119–141 (2013). https://doi.org/10.1007/s10955-013-0816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0816-7

Keywords

Navigation