Skip to main content
Log in

The Fermi-Pasta-Ulam Problem and Its Underlying Integrable Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to a numerical study of the familiar α+β FPU model. Precisely, we here discuss, revisit and combine together two main ideas on the subject: (i) In the system, at small specific energy ε=E/N, two well separated time-scales are present: in the former one a kind of metastable state is produced, while in the second much larger one, such an intermediate state evolves and reaches statistical equilibrium. (ii) FPU should be interpreted as a perturbed Toda model, rather than (as is typical) as a linear model perturbed by nonlinear terms. In the view we here present and support, the former time scale is the one in which FPU is essentially integrable, its dynamics being almost indistinguishable from the Toda dynamics: the Toda actions stay constant for FPU too (while the usual linear normal modes do not), the angles fill their almost invariant torus, and nothing else happens. The second time scale is instead the one in which the Toda actions significantly evolve, and statistical equilibrium is possible. We study both FPU-like initial states, in which only a few degrees of freedom are excited, and generic initial states extracted randomly from an (approximated) microcanonical distribution. The study is based on a close comparison between the behavior of FPU and Toda in various situations. The main technical novelty is the study of the correlation functions of the Toda constants of motion in the FPU dynamics; such a study allows us to provide a good definition of the equilibrium time τ, i.e. of the second time scale, for generic initial data. Our investigation shows that τ is stable in the thermodynamic limit, i.e. the limit of large N at fixed ε, and that by reducing ε (ideally, the temperature), τ approximately grows following a power law τε a, with a=5/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. From Ref. [1]: … It is, therefore, very hard to observe the rate of ‘thermalization’ or mixing in our problem, and this was the initial purpose of the calculation.

  2. The limit is delicate, and approaching it at low ε requires larger and larger N, see [19]; for example, for ε=10−4 the correct asymptotics appears for, say, N=1023 or larger, while N=255 is sufficient at ε=10−3. The two limits N→∞ and ε→0 do not commute at all.

  3. Of course the divergence stops for β so close to β T , that the terms of order five, different in FPU and in Toda, become dominant; see [19].

  4. Odd powers of L do provide the additional constants of motion of the larger periodic model, but identically vanish for motions satisfying (9).

  5. Here and in the following, smaller values of ε would be desirable, but times then get much larger and the numerical work goes behind our possibilities.

  6. It is not easy to compare the speed of MANIAC I used by FPU with the speed of modern CPUs. A prudent estimate gives a ratio of the order 105; this means that each panel of Fig. 1 would require, on MANIAC I, about 105 CPU years.

References

  1. Fermi, E., Pasta, J., Ulam, S.: Studies of non linear problems. Los-Alamos Internal Report, Document LA-1940 (1955). In: Enrico Fermi Collected Papers, vol. II, pp. 977–988. University of Chicago Press/Accademia Nazionale dei Lincei, Chicago/Roma (1965) (also reproduced in Ref. [4])

    Google Scholar 

  2. Tuck, J.L., Menzell, M.T.: The superperiod of the nonlinear weighted string (FPU) problem. Adv. Math. 9, 399–407 (1972), computations go back to 1961 (see Ulam’s presentation of the FPU paper in [1])

    Article  Google Scholar 

  3. Chaos focus issue: The “Fermi-Pasta-Ulam” problem—the first 50 years. Chaos 15 (2005)

  4. Gallavotti, G. (ed.): The Fermi-Pasta-Ulam Problem: A Status Report. Lect. Notes Phys., vol. 728. Springer, Berlin-Heidelberg (2008)

    Google Scholar 

  5. Fucito, E., Marchesoni, F., Marinari, E., Parisi, G., Peliti, L., Ruffo, S., Vulpiani, A.: Approach to equilibrium in a chain of nonlinear oscillators. J. Phys. (Paris) 43, 707–713 (1982)

    Article  MathSciNet  Google Scholar 

  6. Livi, R., Pettini, M., Ruffo, S., Sparpaglione, M., Vulpiani, A.: Relaxation to different stationary states in the Fermi-Pasta-Ulam model. Phys. Rev. A 28, 3544–3552 (1983)

    Article  ADS  Google Scholar 

  7. Berchialla, L., Galgani, L., Giorgilli, A.: Localization of energy in FPU chains. Discrete Contin. Dyn. Syst., Ser. A 11, 855–866 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berchialla, L., Giorgilli, A., Paleari, S.: Exponentially long times to equipartition in the thermodynamic limit. Phys. Lett. A 321, 167–172 (2004)

    Article  ADS  MATH  Google Scholar 

  9. Benettin, G., Carati, A., Galgani, L., Giorgilli, A.: The Fermi-Pasta-Ulam problem and the metastability perspective. In: Gallavotti, G. (ed.) The Fermi-Pasta-Ulam Problem: A Status Report. Lect. Notes Phys., vol. 728, pp. 151–189. Springer, Berlin-Heidelberg (2008)

    Chapter  Google Scholar 

  10. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–245 (1965)

    Article  ADS  MATH  Google Scholar 

  11. Hénon, M.: Integrals of the Toda lattice. Phys. Rev. B 9, 1921–1923 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  12. Flaschka, H.: The Toda lattice. II. Existence of integrals. Phys. Rev. B 9, 1924–1925 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  13. Ferguson, W.E., Flaschka, H., McLaughlin, D.W.: Nonlinear Toda modes for the Toda chain. J. Comput. Phys. 45, 157–209 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Isola, S., Livi, R., Ruffo, S., Vulpiani, A.: Stability and chaos in Hamiltonian dynamics. Phys. Rev. A 33, 1163–1170 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  15. Casetti, L., Cerruti-Sola, M., Pettini, M., Cohen, E.D.G.: The Fermi-Pasta-Ulam problem revisited: stochasticity thresholds in nonlinear Hamiltonian systems. Phys. Rev. E 55, 6566–6574 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  16. Giorgilli, A., Paleari, S., Penati, T.: Local chaotic behaviour in the Fermi-Pasta-Ulam system. Discrete Contin. Dyn. Syst., Ser. B 5, 991–1004 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zabusky, N.J., Sun, Z., Peng, G.: Measures of chaos and equipartition in integrable and nonintegrable lattices. Chaos 16, 013130 (12 pp.) (2006)

    Article  MathSciNet  ADS  Google Scholar 

  18. Henrici, A., Kappeler, T.: Nekhoroshev theorem for the periodic Toda lattice. Chaos 19, 033120 (13 pp.) (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. Benettin, G., Ponno, A.: Time-scales to equipartition in the Fermi-Pasta-Ulam problem: finite-size effects and thermodynamic limit. J. Stat. Phys. 144, 793–812 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Ponno, A., Christodoulidi, H., Skokos, Ch., Flach, S.: The two-stage dynamics in the Fermi-Pasta-Ulam problem: from regular to diffusive behavior. Chaos 21, 043127 (14 pp.) (2011)

    Article  ADS  Google Scholar 

  21. Genta, T., Giorgilli, A., Paleari, S., Penati, T.: Packets of resonant modes in the Fermi-Pasta-Ulam system. Phys. Lett. A 376, 2038–2044 (2012)

    Article  ADS  MATH  Google Scholar 

  22. Benettin, G., Livi, R., Ponno, A.: The Fermi-Pasta-Ulam problem: scaling laws vs. initial conditions. J. Stat. Phys. 135, 873–893 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Bambusi, D., Ponno, A.: On metastability in FPU. Commun. Math. Phys. 264, 539–561 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Carati, A., Galgani, L., Giorgilli, A., Paleari, S.: FPU phenomenon for generic initial data. Phys. Rev. E 76, 022104 (4 pp.) (2007)

    Article  MathSciNet  ADS  Google Scholar 

  25. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  26. Benettin, G., Ponno, A.: On the numerical integration of FPU-like systems. Physica D 240, 568–573 (2011)

    Article  ADS  MATH  Google Scholar 

  27. Carati, A., Maiocchi, A.: Exponentially long stability times for a nonlinear lattice in the thermodynamical limit. Commun. Math. Phys. 314, 129–161 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Benettin, G.: Time-scale for energy equipartition in a two-dimensional FPU model. Chaos 15, 15105 (8 pp.) (2005)

    Article  MathSciNet  Google Scholar 

  29. Benettin, G., Gradenigo, G.: A study of the Fermi-Pasta-Ulam problem in dimension two. Chaos 18, 013112 (13 pp.) (2008)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We feel indebted to all our colleagues of Milano, in particular Luigi Galgani, Antonio Giorgilli, Dario Bambusi, Andrea Carati, Simone Paleari and Tiziano Penati, for (years of) intense discussions; their criticism has been particularly helpful. The results contained in the paper have been preliminarily shown to Giovanni Gallavotti and Giorgio Parisi (Rome), and more recently to the research group around Jean-Pierre Eckmann (Genéve); the comments we received have been quite useful to improve the exposition of our results. This research has been supported by the University of Padova, also covering the post-doc position of H.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Benettin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benettin, G., Christodoulidi, H. & Ponno, A. The Fermi-Pasta-Ulam Problem and Its Underlying Integrable Dynamics. J Stat Phys 152, 195–212 (2013). https://doi.org/10.1007/s10955-013-0760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0760-6

Keywords

Navigation