Skip to main content
Log in

The Analyticity Breakdown for Frenkel-Kontorova Models in Quasi-periodic Media: Numerical Explorations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study numerically the “analyticity breakdown” transition in 1-dimensional quasi-periodic media. This transition corresponds physically to the transition between pinned down and sliding ground states. Mathematically, it corresponds to the solutions of a functional equation losing their analyticity properties.

We implemented some recent numerical algorithms that are efficient and backed up by rigorous results so that we can compute with confidence even close to the breakdown.

We have uncovered several phenomena that we believe deserve a theoretical explanation: (A) The transition happens in a smooth surface. (B) There are scaling relations near breakdown. (C) The scaling near breakdown is very anisotropic. Derivatives in different directions blow up at different rates.

Similar phenomena seem to happen in other KAM problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aubry, S., André, G.: Analyticity breaking and Anderson localization in incommensurate lattices. In: Group Theoretical Methods in Physics (Proc. Eighth Int. Colloq., Kiryat Anavim, 1979). Annals of the Israel Physical Society, vol. 3, pp. 133–164. Hilger, Bristol (1980)

    Google Scholar 

  2. Aubry, S., Le Daeron, P.Y.: The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states. Physica D 8(3), 381–422 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  4. Calleja, R., Celletti, A.: Breakdown of invariant attractors for the dissipative standard map. Chaos 20(1), 013121 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  5. Calleja, R., de la Llave, R.: Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps. Nonlinearity 22(6), 1311–1336 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Calleja, R., de la Llave, R.: Computation of the breakdown of analyticity in statistical mechanics models: numerical results and a renormalization group explanation. J. Stat. Phys. 141(6), 940–951 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Calleja, R., de la Llave, R.: A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification. Nonlinearity 23(9), 2029–2058 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Calleja, R., Figueras, J.-L.: Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. Chaos 23, 02123 (2012)

    Google Scholar 

  9. Celletti, A., Falcolini, C., Locatelli, U.: On the break-down threshold of invariant tori in four dimensional maps. Regul. Chaotic Dyn. 9(3), 227–253 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. de la Llave, R.: KAM theory for equilibrium states in 1-D statistical mechanics models. Ann. Henri Poincaré 9(5), 835–880 (2008)

    Article  ADS  MATH  Google Scholar 

  11. Fox, A., Meiss, J.D.: Critical asymmetric tori in the multiharmonic standard map (2012)

  12. Frenkel, J., Kontorova, T.: On the theory of plastic deformation and twinning. Acad. Sci. URSS, J. Phys. 1, 137–149 (1939)

    MathSciNet  MATH  Google Scholar 

  13. Gambaudo, J.-M., Guiraud, P., Petite, S.: Minimal configurations for the Frenkel-Kontorova model on a quasicrystal. Commun. Math. Phys. 265(1), 165–188 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Gentile, G., van Erp, T.S.: Breakdown of Lindstedt expansion for chaotic maps. J. Math. Phys. 46(10), 102702 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. Greene, J.M.: A method for determining a stochastic transition. J. Math. Phys. 20, 1183–1201 (1979)

    Article  ADS  Google Scholar 

  16. Haro, A., Simó, C.: A numerical study of the breakdown of invariant tori in 4D symplectic maps. In: XIV CEDYA/IV Congress of Applied Mathematics (Vic, 1995), 9 pp. (electronic, in Spanish). Univ. Barcelona, Barcelona (1996)

  17. Herman, M.-R.: Sur les courbes invariantes par les difféomorphismes de l’anneau, vol. 1. Astérisque, vol. 103. Société Mathématique de France, Paris (1983) (with an appendix by Albert Fathi, with an English summary)

    MATH  Google Scholar 

  18. Israel, R.B.: Convexity in the Theory of Lattice Gases. Princeton Series in Physics. Princeton University Press, Princeton (1979) (with an introduction by Arthur S. Wightman)

    MATH  Google Scholar 

  19. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995) (with a supplementary chapter by Katok and Leonardo Mendoza)

    Book  MATH  Google Scholar 

  20. Koch, H.: A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete Contin. Dyn. Syst. 11(4), 881–909 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, P.-L., Souganidis, P.E.: Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Commun. Pure Appl. Math. 56(10), 1501–1524 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. MacKay, R.S.: Renormalisation in Area-Preserving Maps. Advanced Series in Nonlinear Dynamics, vol. 6. World Scientific, River Edge (1993)

    MATH  Google Scholar 

  23. Mather, J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21(4), 457–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mattis, D.C. (ed.): The Many-Body Problem. An Encyclopedia of Exactly Solved Models in One Dimension, 3rd edn. (with revisions and corrections). World Scientific, Hackensack (2009)

    MATH  Google Scholar 

  25. Mestel, B.D., Osbaldestin, A.H.: Periodic orbits of renormalisation for the correlations of strange nonchaotic attractors. Math. Phys. Electron. J. 6, 5 (2000)

    MathSciNet  Google Scholar 

  26. Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations. I. Ann. Sc. Norm. Super. Pisa (3) 20, 265–315 (1966)

    MATH  Google Scholar 

  27. Moser, J.: Monotone twist mappings and the calculus of variations. Ergod. Theory Dyn. Syst. 6(3), 401–413 (1986)

    Article  MATH  Google Scholar 

  28. Percival, I.C.: A variational principle for invariant tori of fixed frequency. J. Phys. A 12(3), L57–L60 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin, New York (1969)

    MATH  Google Scholar 

  30. Rüssmann, H.: On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus. In: Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, 1974). Lecture Notes in Physics, vol. 38, pp. 598–624. Springer, Berlin (1975)

    Chapter  Google Scholar 

  31. Rüssmann, H.: Note on sums containing small divisors. Commun. Pure Appl. Math. 29(6), 755–758 (1976)

    Article  Google Scholar 

  32. Su, X., de la Llave, R.: KAM theory for quasi-periodic equilibria 1-D quasiperiodic media. SIAM J. Math. Anal. 14, 3901–3927 (2012)

    Article  Google Scholar 

  33. Su, X., de la Llave, R.: KAM theory for quasi-periodic equilibria in one dimensional quasiperiodic media II: extended range interactions. J. Phys. A 45, 45203 (2012)

    Article  Google Scholar 

  34. Tompaidis, S.: Numerical study of invariant sets of a quasiperiodic perturbation of a symplectic map. Exp. Math. 5(3), 211–230 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. van Erp, T.S.: Frenkel-Kontorova model on quasiperiodic substrate potentials. Thesis (1999)

  36. van Erp, T.S., Fasolino, A.: Aubry transition studied by direct evaluation of the modulation functions of infinite incommensurate systems. Europhys. Lett. 59(3), 330–336 (2002)

    Article  ADS  Google Scholar 

  37. van Erp, T.S., Fasolino, A., Radulescu, O., Janssen, T.: Pinning and phonon localization in Frenkel-Kontorova models on quasiperiodic substrates. Phys. Rev. B 60, 6522–6528 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Part of this work was done while the authors were affiliated with Univ. of Texas. We thank S. Hernandez and X. Su for many discussions about this problem and about numerical issues. We also thank the Center for Nonlinear Analysis (NSF Grants No. DMS-0405343 and DMS-0635983), where part of this research was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Blass.

Additional information

R.L. has been partially supported by NSF grant DMS 1162544. T.B. was supported by the NSF under the PIRE Grant No. OISE-0967140.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blass, T., de la Llave, R. The Analyticity Breakdown for Frenkel-Kontorova Models in Quasi-periodic Media: Numerical Explorations. J Stat Phys 150, 1183–1200 (2013). https://doi.org/10.1007/s10955-013-0718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0718-8

Keywords

Navigation