Skip to main content

Advertisement

Log in

Relaxation Height in Energy Landscapes: An Application to Multiple Metastable States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The study of systems with multiple (not necessarily degenerate) metastable states presents subtle difficulties from the mathematical point of view related to the variational problem that has to be solved in these cases. We prove sufficient conditions to identify multiple metastable states. Since this analysis typically involves non-trivial technical issues, we give different conditions that can be chosen appropriately depending on the specific model under study. We show how these results can be used to attack the problem of multiple metastable states via the use of the modern approaches to metastability. We finally apply these general results to the Blume–Capel model for a particular choice of the parameters for which the model happens to have two multiple not degenerate in energy metastable states. We estimate in probability the time for the transition from the metastable states to the stable state. Moreover we identify the set of critical configurations that represent the minimal gate for the transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Since the energy landscape is reversible, the energy of the state ω n is implicitly taken into account in (2.2), indeed (2.1) implies H(ω n )≤Δ(ω n−1,ω n )+H(ω n−1).

  2. The centers of the unit squares forming a connected polyomino are a nearest neighbor connected subset of ℤ2. As in [1] here a polyomino is not necessarily connected, different definitions, see for instance [6], can be found in the literature.

References

  1. Alonso, L., Cerf, R.: The three dimensional polyominoes of minimal area. Electron. J. Comb. 3, #R27 (1996)

    MathSciNet  Google Scholar 

  2. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065–1114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bigelis, S., Cirillo, E.N.M., Lebowitz, J.L., Speer, E.R.: Critical droplets in metastable probabilistic cellular automata. Phys. Rev. E 59, 3935 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  4. Blume, M.: Theory of the first-order magnetic phase change in UO2. Phys. Rev. 141, 517 (1966)

    Article  ADS  Google Scholar 

  5. Blume, M., Emery, V.J., Griffiths, R.B.: Ising model for the λ transition and phase separation in He3–He4 mixtures. Phys. Rev. A 4, 1071–1077 (1971)

    Article  ADS  Google Scholar 

  6. Bousquet-Mélou, M., Fédou, J.M.: The generating function of convex polyominoes: the resolution of a q-differential system. Discrete Math. 137, 53–75 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bovier, A.: Metastability: a potential theoretic approach. In: Proceedings of ICM 2006, pp. 499–518. Eur. Math. Soc., Zurich (2006)

    Google Scholar 

  8. Bovier, A., Manzo, F.: Metastability in Glauber dynamics in the low-temperature limit: beyond exponential asymptotics. J. Stat. Phys. 107, 757–779 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228, 219–255 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Bovier, A., den Hollander, F., Nardi, F.R.: Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary. Probab. Theory Relat. Fields 135, 265–310 (2006)

    Article  MATH  Google Scholar 

  11. Capel, H.W.: On possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32, 966 (1966)

    Article  ADS  Google Scholar 

  12. Cirillo, E.N.M., Nardi, F.R.: Metastability for the Ising model with a parallel dynamics. J. Stat. Phys. 110, 183–217 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cirillo, E.N.M., Olivieri, E.: Metastability and nucleation for the Blume-Capel model. Different mechanisms of transition. J. Stat. Phys. 83, 473–554 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Cirillo, E.N.M., Nardi, F.R., Polosa, A.D.: Magnetic order in the Ising model with parallel dynamics. Phys. Rev. E 64, 57103 (2001)

    Article  ADS  Google Scholar 

  15. Cirillo, E.N.M., Nardi, F.R., Spitoni, C.: Metastability for reversible probabilistic cellular automata with self-interaction. J. Stat. Phys. 132, 431–471 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Cirillo, E.N.M., Nardi, F.R., Spitoni, C.: Competitive nucleation in reversible probabilistic cellular automata. Phys. Rev. E 78, 040601 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Cirillo, E.N.M., Nardi, F.R., Spitoni, C.: Competitive nucleation in metastable systems. In: Applied and Industrial Mathematics in Italy III. Series on Advances in Mathematics for Applied Sciences, vol. 82, pp. 208–219 (2010)

    Google Scholar 

  18. Friedlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Berlin (1984)

    Book  Google Scholar 

  19. Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Grinstein, G., Jayaprakash, C., He, Y.: Statistical mechanics of probabilistic cellular automata. Phys. Rev. Lett. 55, 2527–2530 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  21. den Hollander, F., Olivieri, E., Scoppola, E.: Metastability and nucleation for conservative dynamics. J. Math. Phys. 41, 1424–1498 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. den Hollander, F., Nardi, F.R., Troiani, A.: Kawasaki dynamics with two types of particles: stable/metastable configurations and communication heights. J. Stat. Phys. 145, 1423–1457 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. den Hollander, F., Nardi, F.R., Troiani, A.: Metastability for Kawasaki dynamics at low temperature with two types of particles. Electron. J. Probab. 17, 1–26 (2012)

    MathSciNet  Google Scholar 

  24. Mehta, D.: Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method. Phys. Rev. E 84, 025702(R) (2011)

    Article  ADS  Google Scholar 

  25. Manzo, F., Olivieri, E.: Dynamical Blume–Capel model: competing metastable states at infinite volume. J. Stat. Phys. 104, 1029–1090 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Manzo, F., Nardi, F.R., Olivieri, E., Scoppola, E.: On the essential features of metastability: tunnelling time and critical configurations. J. Stat. Phys. 115, 591–642 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Nardi, F.R., Spitoni, C.: Sharp asymptotics for stochastic dynamics with parallel updating rule. J. Stat. Phys. 146, 701–718 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Olivieri, E., Scoppola, E.: Markov chains with exponentially small transition probabilities: first exit problem from a general domain. I. The reversible case. J. Stat. Phys. 79, 613–647 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Olivieri, E., Vares, M.E.: Large Deviations and Metastability. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  30. Wales, D.J.: Energy Landscapes. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Acknowledgements

This work has been partially done at Eurandom during the Stochastic Activity Month, February 2012. ENMC wants to express his thanks to the organizers, R. Fernandez, R. van der Hofstad, and M. Heydenreich, for the invitation and to Eurandom for the kind hospitality. ENMC also thanks R. Cerf for clarifying discussions on polyominoes. FRN thanks F. den Hollander and A. Troiani for many interesting discussions related to the topic of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio N. M. Cirillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirillo, E.N.M., Nardi, F.R. Relaxation Height in Energy Landscapes: An Application to Multiple Metastable States. J Stat Phys 150, 1080–1114 (2013). https://doi.org/10.1007/s10955-013-0717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0717-9

Keywords

Navigation