Skip to main content
Log in

Lieb–Robinson Bounds for the Toda Lattice

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We establish locality estimates, known as Lieb–Robinson bounds, for the Toda lattice. In contrast to harmonic models, the Lieb–Robinson velocity for these systems do depend on the initial condition. Our results also apply to the entire Toda as well as the Kac-van Moerbeke hierarchy. Under suitable assumptions, our methods also yield a finite velocity for certain perturbations of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications, 2nd edn. Springer, New York (1983)

    MATH  Google Scholar 

  2. Amour, L., Levy-Bruhl, P., Nourrigat, J.: Dynamics and Lieb–Robinson estimates for lattices of interacting anharmonic oscillators. Colloq. Math. 118, 609–648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachmann, S., Michalakis, S., Nachtergaele, B., Sims, R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309, 835–871 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A., et al. (eds.) Mathematical Physics 2000, pp. 128–150. Imperial College Press, London (2000)

    Chapter  Google Scholar 

  5. Borovyk, V., Sims, R.: Dispersive estimates for harmonic oscillator systems. J. Math. Phys. 53, 013302 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bravyi, S., Hastings, M.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307, 609–627 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bravyi, S., Hastings, M., Michalakis, S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bulla, W., Gesztesy, F., Holden, H., Teschl, G.: Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies. Mem. Am. Math. Soc. 135(641) (1998)

  9. Buttà, P., Caglioti, E., Di Ruzza, S., Marchioro, C.: On the propagation of a perturbation in an anharmonic system. J. Stat. Phys. 127, 313 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Cramer, M., Serafini, A., Eisert, J.: Locality of dynamics in general harmonic quantum system. In: Ericsson, M., Montangero, S. (eds.) Quantum Information and Many Body Quantum Systems, Edizioni della Normale, Pisa, ISBN 978-88-7642-307-9 (2008)

    Google Scholar 

  11. Faddeev, L., Takhtajan, L.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    MATH  Google Scholar 

  12. Flaschka, H.: The Toda lattice. I. Phys. Rev. B 9, 1924–1925 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  13. Flaschka, H.: The Toda lattice. II. Prog. Theor. Phys. 51, 703–716 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  14. Gesztesy, F., Holden, H., Teschl, G.: The algebro-geometric Toda hierarchy initial value problem for complex-valued initial data. Rev. Mat. Iberoam. 24, 117–182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gesztesy, F., Holden, H., Michor, J., Teschl, G.: Soliton Equations and Their Algebro-Geometric Solutions. Vol. II: (1+1)-Dimensional Discrete Models. Cambridge Studies in Advanced Mathematics, vol. 114. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  16. Hamza, E., Sims, R., Stolz, G.: Dynamical localization in disordered quantum spin systems. Commun. Math. Phys. (2011, to appear). doi:10.1007/s00220-012-1544-6. e-print 1108.3811

  17. Hastings, M.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  18. Hastings, M.: An area law for one dimensional quantum systems. J. Stat. Mech. Theory Exp. P08024 (2007). doi:10.1088/1742-5468/2007/08/P08024

  19. Hastings, M.: Locality in quantum systems. e-print 1008.5137 (2010)

  20. Hastings, M., Koma, T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Hastings, M., Michalakis, S.: Quantization of hall conductance for interacting electrons without averaging assumptions, e-print 0911.4706

  22. Krüger, H., Teschl, G.: Long-time asymptotics for the Toda lattice for decaying initial data revisited. Rev. Math. Phys. 21, 61–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krüger, H., Teschl, G.: Unique continuation for discrete nonlinear wave equations. Proc. Am. Math. Soc. 140, 1321–1330 (2012)

    Article  MATH  Google Scholar 

  24. Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  25. Manakov, S.V.: Complete integrability and stochastization of discrete dynamical systems. Sov. Phys. JETP 40, 269–274 (1975)

    MathSciNet  ADS  Google Scholar 

  26. Marchioro, C., Pellegrinotti, A., Pulvirenti, M., Triolo, L.: Velocity of a perturbation in infinite lattice systems. J. Stat. Phys. 19(5), 499–510 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  27. Michor, J., Teschl, G.: On the equivalence of different Lax pairs for the Kac-van Moerbeke hierarchy. In: Adamyan, V., et al. (eds.) Modern Analysis and Applications. Oper. Theory Adv. Appl., vol. 191, pp. 445–453. Birkhäuser, Basel (2009)

    Chapter  Google Scholar 

  28. Nachtergaele, B., Ogata, Y., Sims, R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124(1), 1 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Nachtergaele, B., Raz, H., Schlein, B., Sims, R.: Lieb–Robinson bounds for harmonic and anharmonic lattice systems. Commun. Math. Phys. 286, 1073–1098 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Nachtergaele, B., Schlein, B., Sims, R., Starr, S., Zagrebnov, V.: On the existence of the dynamics for anharmonic quantum oscillator systems. Rev. Math. Phys. 22(2), 207–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nachtergaele, B., Sims, R.: Lieb–Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265(1), 119–130 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Nachtergaele, B., Sims, R.: A multi-dimensional Lieb–Schultz–Mattis theorem. Commun. Math. Phys. 276(2), 437–472 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Nachtergaele, B., Sims, R.: Lieb–Robinson bounds in quantum many-body physics. In: Entropy and the Quantum, Tucson, AZ, 2009. Contemp. Math., vol. 529, pp. 141–176. Am. Math. Soc., Providence (2010)

    Chapter  Google Scholar 

  34. Nachtergaele, B., Vershynina, A., Zagrebnov, V.: Lieb–Robinson bounds and existence of the thermodynamic limit for a class of irreversible quantum dynamics. In: Arizona School of Analysis with Applications, Tucson, AZ, 2010. Contemp. Math., vol. 552, pp. 161–175. Am. Math. Soc., Providence (2011)

    Google Scholar 

  35. Olver, F.W.J., et al. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  36. Poulin, D.: Lieb–Robinson bound and locality for general Markovian quantum dynamics. Phys. Rev. Lett. 104, 190401 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  37. Prémont-Schwarz, I., Hamma, A., Klich, I., Markopoulou-Kalamara, F.: Lieb–Robinson bounds for commutator-bounded operators. Phys. Rev. A 81(4), 040102 (2009). doi:10.1103/PhysRevA.81.040102

    Article  Google Scholar 

  38. Raz, H., Sims, R.: Estimating the Lieb–Robinson velocity for classical anharmonic lattice systems. J. Stat. Phys. 137, 79–108 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Schuch, N., Harrison, S., Osborne, T., Eisert, J.: Information propagation for interacting particle systems. Phys. Rev. A 84, 032309 (2011)

    Article  ADS  Google Scholar 

  40. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices. Mathematical Surveys and Monographs, vol. 72. Amer. Math. Soc, Providence (2000)

    MATH  Google Scholar 

  41. Teschl, G.: Almost everything you always wanted to know about the Toda equation. Jahresber. Dtsch. Math.-Ver. 103, 149–162 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Teschl, G.: On the spatial asymptotics of solutions of the Toda lattice. Discrete Contin. Dyn. Syst. 27, 1233–1239 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Toda, M.: Theory of Nonlinear Lattices, 2nd edn. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  44. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bruno Nachtergaele for suggesting the problem discussed in this article and for several productive discussions. Also, the authors would like to acknowledge the hospitality of the Erwin Schrödinger Institute in Vienna, Austria where parts of this paper were discussed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Sims.

Additional information

R. S. and U. I. were supported, in part, by NSF grants DMS-0757424 and DMS-1101345. G. T. was supported by the Austrian Science Fund (FWF) under Grant No. Y330.

Appendix Existence of Bounded Solutions for Hamiltonian Systems

Appendix Existence of Bounded Solutions for Hamiltonian Systems

In this appendix we want to look at a general Hamiltonian system with nearest neighbor interaction:

$$ H(\mathrm{x})=\sum_{n\in \mathbb {Z}} \biggl( \frac{p_n^2}{2} + V(q_{n+1} -q_{n}) \biggr), $$
(A.1)

where x={(p n ,q n )} n∈ℤ. Let VC 2(ℝ) with V(x)≥0 and V(0)=V′(0)=0 such that 0 is a fixed point of the system. Since we want to obtain bounded solutions we will assume that our interaction potential is confining in the sense that V(x)→+∞ as x→±∞. Since the uniform motion q n (t)=q 0+p 0 t (with q 0,p 0 some real constants) of the system is unbounded we switch to relative coordinates r n =q n+1q n in which the equation of motions read

$$ \dot{r}_n = p_{n+1} - p_n, \qquad\dot{p}_n = V'(r_n) - V'(r_{n-1}). $$
(A.2)

We will consider this system in the Hilbert space \(\mathcal{X}=\ell^{2}(\mathbb {Z}) \times\ell^{2}(\mathbb {Z})\).

Theorem A.1

Suppose VC 2(ℝ) such that 0 is a unique global minimum with V(0)=V′(0)=0, V″(0)>0 and V(x)→+∞ as |x|→∞.

Then the system (A.2) has a unique global solution in \(\mathcal{X}\) for which the energy

$$ H(p,r)= \sum_{n\in \mathbb {Z}} \biggl( \frac{p_n^2}{2} + V(r_n) \biggr) $$
(A.3)

is finite and conserved. This solution is C 1 with respect to the initial condition. Moreover, 0 is a stable fixed point and all solutions satisfy ∥(p(t),r(t))∥2C as well as ∥(p(t),r(t))∥C, where the constant C depends only on the initial condition.

Proof

First of all note that by our assumption on V we can find constants c R and C R for every R>0 such that |V(x)|≤C R x 2, |V′(x)|≤C R |x| and |V(x)|≥c R x 2 for |x|≤R.

In particular, for r 2(ℤ) with ∥r2R we have ∥V′(r)∥2C R r2 and it follows that the map r n V′(r n ) is C 1 on 2(ℤ). Since the same is true for the shift operator x n x n−1, our vector field is C 1 and local existence and uniqueness follow from standard results [1, Thm. 4.1.5]. This also implies that the flow is C 1 with respect to the initial condition [1, Lem. 4.1.9]. Moreover, |H(p,r)|≤C R ∥(p,r)∥2 implies that H is finite on \(\mathcal{X}\) and a straightforward calculation shows that it is conserved by the flow.

Moreover, H(p,r)≥c 1ε for ∥(p,r)∥2=ε and ε≤1. Hence [1, Thm. 4.3.11] shows that 0 is a stable fixed point.

Finally, if V(x)→+∞ there is a constant M E such that |x|≤M E whenever |V(x)|≤E. Hence setting E=H(p(0),r(0)) we have H(p(t),r(t))=E implying \(\|p(t)\|_{2} \le\sqrt{2E}\) and ∥r(t)∥M E . But this implies \(\|r(t)\|_{2} \le c_{M_{E}}^{-1} \|V(r)\|_{2} \le c_{M_{E}}^{-1} \sqrt{E}\). Hence our vector field remains bounded along integral curves on finite t intervals and hence all solutions are global in time by [1, Prop. 4.1.22]. □

Note that, using \(q_{n}(t) =q_{n}(0) + \int_{0}^{t} p_{n}(s) ds\), for our original variables we get

$$ \bigl\|q(t)\bigr\|_2 \le \bigl\|q(0)\bigr\|_2 + C |t|, \qquad \bigl\|q(t) \bigr\|_\infty\le \bigl\|q(0)\bigr\|_\infty+ C |t|. $$
(A.4)

Moreover, clearly the Toda potential V(r)=e r+r−1 satisfies the above assumptions.

Theorem A.2

Let \(\mathrm {x}=(p,r) \in\mathcal{X}\) and μ>0. There exists a number v=v(μ,x) for which given any n,m∈ℤ, the bound

$$ \max \biggl[ \biggl \vert \frac{\partial }{ \partial z} p_n(t)\biggr \vert , \biggl \vert \frac{\partial }{ \partial z} r_n(t)\biggr \vert \biggr] \leq C \, e^{- \mu( |n-m| - v |t| )} , $$
(A.5)

holds for all t∈ℝ and each z∈{p m ,r m }, where

$$ C = C(\mathrm {x}) = \max \Bigl( \sup_{(t,n)\in \mathbb {R}\times \mathbb {Z}} \bigl|V' \bigl(r_n(t) \bigr)\bigr|^{1/2}, 1 \Bigr). $$
(A.6)

In fact, one may take

$$ v = 2 C \biggl(e^{\mu+1}+\frac{1}{\mu} \biggr). $$
(A.7)

Proof

Fix \(\mathrm {x}\in\mathcal{X}\). Our previous theorem guarantees that for each x∈M and n∈ℤ, the function F n :ℝ→ℝ2 given by

$$ F_n(t; \mathrm {x})= \begin{pmatrix} r_n(t) \\[3pt] p_n(t) \end{pmatrix} $$
(A.8)

is well-defined and differentiable with respect to each z∈{p m ,r m }. When convenient, we will suppress the dependence of F n on x. Using the equations of motion, i.e. (A.2), it is clear that

$$ F_n(t)= F_n(0)+\int_0^t \begin{pmatrix} p_{n+1}(s) - p_n(s) \\[3pt] V'(r_n(s)) - V'(r_{n-1}(s)) \end{pmatrix} \, ds . $$
(A.9)

Differentiating with respect to z we obtain

$$ \frac{\partial }{ \partial z} F_n(t) = \frac{\partial }{ \partial z} F_n(0) + \sum_{|e|\leq 1}\int _0^t D_{n,e}(s) \frac{\partial }{ \partial z} F_{n+e}(s) \, ds, $$
(A.10)

with

$$ D_{n,e}(s) = \begin{pmatrix}0 & \delta_1(e)-\delta_0(e) \\[3pt] V'(r_n) \delta_0(e) - V'(r_{n-1}) \delta_{-1}(e) & 0 \end{pmatrix} . $$
(A.11)

Hence

$$ \biggl\vert\frac{\partial }{ \partial z} F_n(t)\biggr\vert\leq \biggl\vert\frac{\partial }{ \partial z} F_n(0)\biggr\vert+ \sum_{|e|\leq1}\int _0^{|t|} D_{e} \biggl\vert\frac{\partial }{ \partial z} F_{n+e}(s)\biggr\vert\, ds, $$
(A.12)

where

$$ D_e = \begin{pmatrix} 0 & \quad \delta_1(e)+\delta_0(e) \\[3pt] C^2 (\delta_0(e) + \delta_{-1}(e)) &\quad 0 \end{pmatrix} . $$
(A.13)

Let us now consider the case that z=r m , i.e.,

$$ \frac{ \partial}{\partial r_m}F_n(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \delta_m(n) . $$
(A.14)

In this case, iteration yields

(A.15)

where we have set

$$ D = \frac{1}{2C} \sum_{|e| \leq1} D_e = \begin{pmatrix} 0 & \quad C^{-1} \\[3pt] C &\quad 0 \end{pmatrix} . $$
(A.16)

Again, convergence is guaranteed since \(\frac{\partial }{ \partial z} F_{n}(t)\) is continuous and thus bounded on compact time intervals. Using , one obtains

$$ \biggl \Vert \frac{\partial }{\partial r_m}F_n(t) \biggr \Vert _{\infty} \leq C \sum_{k=|n-m|}^\infty \frac{|2C t|^k}{k!} $$
(A.17)

The rest follows as in Theorem 2.1. □

Note that in Flaschka variables (2.3) the equations of motion read

$$ \begin{array}{c} \dot{a}_n(t) = a_n(t) \bigl( b_{n+1}(t) - b_n(t) \bigr) \quad\mbox{and} \\[5pt] \dot{b}_n(t) = -\dfrac{1}{2} \bigl(V' \bigl(- \ln \bigl(4a_n^2 \bigr) \bigr) - V' \bigl(- \ln \bigl(4a_{n-1}^2 \bigr) \bigr) \bigr) , \end{array} $$
(A.18)

and (p,r) will be bounded if and only if (a,a −1,b) are bounded. The fixed point in these new coordinates is \((a_{0},b_{0})=(\frac{1}{2},0)\) and \((p,r)\in\mathcal{X}\) if and only if \((a,b)-(a_{0},b_{0})=\allowbreak (a-\frac{1}{2},b) \in\mathcal{X}\).

Finally, by

$$ a_n(t) = a_n(0) \exp \biggl(\,\int _0^t \bigl(b_{n+1}(s) - b_n(s) \bigr)\, ds \biggr) $$
(A.19)

the sign of a n is preserved under the flow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islambekov, U., Sims, R. & Teschl, G. Lieb–Robinson Bounds for the Toda Lattice. J Stat Phys 148, 440–479 (2012). https://doi.org/10.1007/s10955-012-0554-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0554-2

Keywords

Navigation