Skip to main content
Log in

Gaussian Convergence for Stochastic Acceleration of Particles in the Dense Spectrum Limit

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The velocity of a passive particle in a one-dimensional wave field is shown to converge in law to a Wiener process, in the limit of a dense wave spectrum with independent complex amplitudes, where the random phases distribution is invariant modulo π/2 and the power spectrum expectation is uniform. The proof provides a full probabilistic foundation to the quasilinear approximation in this limit. The result extends to an arbitrary number of particles, founding the use of the ensemble picture for their behaviour in a single realization of the stochastic wave field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Note that this model differs from stochastic acceleration problems in a random potential, for which the field E(x,t) reduces to a static random E(x).

  2. The contrast between this conclusion and Bénisti–Escande’s [4] might be attributed to the asymptotic nature of our result, as s→∞. We do not provide estimates for the “convergence rate” of the empirical distribution to its Fokker-Planck limit.

  3. As pointed out by a referee, this argument reduces to Bessel’s inequality, when one views \(u_{n}^{M}\) as a sum of 2M+1 basis functions, in the Hilbert space (whose elements are stochastic processes u) with scalar product \((u,v) = \mathbb{E}\int_{0}^{2\pi} u^{*}(s) v(s) \, \mathrm {d}s\). Our assumptions on the r.v.’s α m,n ensure orthonormality of our basis.

References

  1. Bénisti, D.: Validité de l’équation de diffusion en dynamique hamiltonienne, Thèse de doctorat. Université de Provence, Marseille (1995)

  2. Bénisti, D., Escande, D.F.: Origin of diffusion in Hamiltonian dynamics. Phys. Plasmas 4, 1576–1581 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bénisti, D., Escande, D.F.: Finite range of large perturbations in Hamiltonian dynamics. J. Stat. Phys. 92, 909–972 (1998)

    Article  ADS  MATH  Google Scholar 

  4. Bénisti, D., Escande, D.F.: Nonstandard diffusion properties of the standard map. Phys. Rev. Lett. 80, 4871–4874 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bourret, R.C.: Propagation of randomly perturbed fields. Can. J. Phys. 40, 782–790 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bourret, R.C.: Stochastically perturbed fields, with applications to wave propagation in random media. Nuovo Cimento 26, 1–31 (1962)

    MathSciNet  MATH  Google Scholar 

  7. Bourret, R.C.: Fiction theory of dynamical systems with noisy parameters. Can. J. Phys. 43, 619–639 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  8. Brissaud, A., Frisch, U.: Solving linear stochastic differential equations. J. Math. Phys. 15, 524–534 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Cary, J.R., Escande, D.F., Verga, A.D.: Non quasilinear diffusion far from the chaotic threshold. Phys. Rev. Lett. 65, 3132–3135 (1990)

    Article  ADS  Google Scholar 

  10. Doss, H.: Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. Henri Poincaré, B 13, 99–125 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Doveil, F., Macor, A., Auhmani, Kh.: Wave-particle interaction investigated in a traveling wave tube. Plasma Phys. Control. Fusion 47, A261–A271 (2005)

    Article  ADS  Google Scholar 

  12. Doveil, F., Escande, D.F., Macor, A.: Experimental observation of nonlinear synchronization due to a single wave. Phys. Rev. Lett. 94, 085003 (2005) (4 pp.)

    Article  ADS  Google Scholar 

  13. Drummond, W., Pines, D.: Nonlinear stability of plasma oscillations. Nucl. Fusion Suppl. 3, 1049–1057 (1962)

    Google Scholar 

  14. Elskens, Y.: Quasilinear limit for particle motion in a prescribed spectrum of random waves. Phys. AUC 17(I), 109–121 (2007)

    Google Scholar 

  15. Elskens, Y.: Nonquasilinear evolution of particle velocity in incoherent waves with random amplitudes. Commun. Nonlinear Sci. Numer. Simul. 15, 10–15 (2010)

    Article  ADS  Google Scholar 

  16. Elskens, Y., Escande, D.: Microscopic Dynamics of Plasmas and Chaos. IOP Publishing, Bristol (2003)

    Book  MATH  Google Scholar 

  17. Elskens, Y., Pardoux, E.: Diffusion limit for many particles in a periodic stochastic acceleration field. Ann. Appl. Probab. 20, 2022–2039 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Escande, D.F.: Stochasticity in classical Hamiltonian systems: universal aspects. Phys. Rep. 121, 166–261 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  19. Escande, D., Elskens, Y.: Quasilinear diffusion for the chaotic motion of a particle in a set of longitudinal waves. Acta Phys. Pol. B 33, 1073–1084 (2002)

    ADS  Google Scholar 

  20. Escande, D.F., Elskens, Y.: Microscopic dynamics of plasmas and chaos: the wave-particle interaction paradigm. Plasma Phys. Control. Fusion 45, A115–A124 (2003)

    Article  ADS  Google Scholar 

  21. Friz, P., Victoir, N.: A note on the notion of geometric rough paths. Probab. Theory Relat. Fields 136, 395–416 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldston, R.J., Rutherford, P.H.: Introduction to Plasma Physics. IOP Publishing, Bristol (1995)

    Book  Google Scholar 

  23. Hazeltine, R.D., Waelbroeck, F.L.: The Framework of Plasma Physics. Westview Press, Boulder (2004)

    Google Scholar 

  24. Ishihara, O., Xia, H., Watanabe, S.: Long-time diffusion in plasma turbulence with broad uniform spectrum. Phys. Fluids B 5, 2786–2792 (1993)

    Article  ADS  Google Scholar 

  25. Itô, K.: Distribution-valued processes arising from independent Brownian motions. Math. Z. 182, 17–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kac, M.: Foundations of kinetic theory. In: Neyman, J. (ed.) Proc. 3rd Berkely Symp. Math. Stat. Prob., vol. 3, pp. 171–197. University of California Press, Berkeley (1956)

    Google Scholar 

  27. Kac, M.: Probability and Related Topics in Physical Sciences. Am. Math. Soc., Providence (1959)

    MATH  Google Scholar 

  28. Kadomtsev, B.B.: Plasma Turbulence (Transl. L.C. Ronson and M.G. Rusbridge). Academic Press, London (1965)

    Google Scholar 

  29. Kahane, J.-P.: Some Random Series of Functions, 2nd edn. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  30. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2001)

    Google Scholar 

  31. Laval, G., Pesme, D.: Controversies about quasi-linear theory. Plasma Phys. Control. Fusion 41, A239–A246 (1999)

    Article  ADS  Google Scholar 

  32. Lebowitz, J.L., Spohn, H.: Microscopic basis for Fick’s law for self-diffusion. J. Stat. Phys. 28, 539–556 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  33. Lejay, A.: Yet another introduction to rough paths. In: Donati-Martin, C., Émery, M., Rouault, A., Stricker, C. (eds.) Séminaire de Probabilités XLII. Lect. Notes Math., vol. 1979, pp. 1–101. Springer, Berlin (2009)

    Chapter  Google Scholar 

  34. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  35. Papanicolaou, G.C., Kohler, W.: Asymptotic theory of mixing stochastic ordinary differential equations. Commun. Pure Appl. Math. 27, 641–668 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  36. Romanov, Yu.A., Filippov, G.F.: The interaction of fast electron beams with longitudinal plasma waves. J. Eksp. Theoret. Phys. USSR 40, 123–132 (1961), Sov. Phys. JETP 13, 87–92 (1961)

    Google Scholar 

  37. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  38. Sturrock, P.: Stochastic acceleration. Phys. Rev. 141, 186–191 (1966)

    Article  ADS  Google Scholar 

  39. Sussman, H.J.: On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6, 19–41 (1978)

    Article  Google Scholar 

  40. Thomson, J.J., Benford, G.: Green’s function for Markovian systems. J. Math. Phys. 14, 531–536 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Tsunoda, S.I., Doveil, F., Malmberg, J.H.: Experimental test of quasilinear theory. Phys. Fluids B 3, 2747–2757 (1991)

    Article  ADS  Google Scholar 

  42. Vanden Eijnden, E.: Some remarks on the quasilinear treatment of the stochastic acceleration problem. Phys. Plasmas 4, 1486–1488 (1997)

    Article  ADS  Google Scholar 

  43. Vedenov, A.A., Velikhov, E.P., Sagdeev, R.Z.: Nonlinear oscillations of rarified plasma. Nucl. Fusion 1, 82–100 (1961), Nucl. Fusion 1, 145 (1961), English abstract

    Article  Google Scholar 

  44. Vedenov, A.A., Velikhov, E.P., Sagdeev, R.Z.: Quasilinear theory of plasma oscillations. Nucl. Fusion Suppl. 2, 465–475 (1962)

    Google Scholar 

  45. Wong, E., Zakai, M.: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat. 36, 1560–1564 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work benefited from many discussions with D. Escande and members of équipe turbulence plasma, with E. Pardoux, and with participants to the 107th statistical mechanics conference at Rutgers. Stimulating comments by D. Bénisti and D. Escande, and an explanation by A. Lejay are gratefully acknowledged, as are the careful reading and constructive comments by the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Elskens.

Appendix

Appendix

In Ref. [17] we introduced the auxiliary process (X t ,Y t ), describing the relative position and velocity of two particles evolving in the same wave field. This process solves

(33)
(34)

in the state space \(E = \mathbb{T}\times\mathbb{R}\setminus\{(0,0), (\pi,0)\}\), where \(\mathbb{T}= \mathbb{R}/(2\pi\mathbb{Z})\) and B t is the standard Brownian motion in C(ℝ+,ℝ). We proved there in Proposition 5.1 that, for any (x,y)∈E, this process a.s. does not reach the points {(0,0),(π,0)} in finite time. The proof in Ref. [17] does not identify points modulo 2π for their x component; one can streamline it as follows.

Proposition 1

For any (x,y)∈E, \(\inf\{ t>0 : \sin^{2}(X_{t}) + Y_{t}^{2} = 0 \} = + \infty\) a.s., and \(\inf\{ \theta>\nobreak 0 : \limsup_{t \to\theta^{-}} (\sin^{2}(X_{t}) + Y_{t}^{2}) = + \infty\} = + \infty\) a.s.

Proof

Let \(R_{t} = \sin^{2}(X_{t}) + Y_{t}^{2}\) and define Z t =logR t . Denote by τ either of these stopping times, corresponding respectively to Z t →−∞ and Z t →+∞. Then Itô calculus on [0,τ[ yields

(35)
(36)
(37)

Noting that 2|ab|≤a 2+b 2 and that |cosx|≤1 yields the estimates \(Y_{t}^{2} \sin^{2}(X_{t}) \leq R_{t}^{2} / 4\) and 2Y t sin(X t )cos(X t )+sin2(X t )≥−R t , so that on the time interval [0,τ[

$$ Z_t \geq Z_0 - \frac{3t}{2} + \int _0^t \varphi_s \, \mathrm{d}B_s $$
(38)

where |φ s |≤1. This ensures that Z t is bounded from below on any finite time interval since B t is bounded. Hence inf{t>0:R t =0}=+∞ a.s.

Similar upper estimates imply

$$ Z_t \leq Z_0 + 2 t + \int_0^t \varphi_s \, \mathrm{d}B_s $$
(39)

ensuring that Z t is bounded from above on any finite time interval. Hence \(\inf\{ \theta>0 : \limsup_{t \to\theta^{-}} R_{t} = + \infty\} = + \infty\) a.s. □

The second claim of the present statement does not supersede Lemma 5.4 of Ref. [17], which proves that Y t does a.s. not diverge as t→∞. The present statement only proves that (X t ,Y t ) remains in E for all t>0 a.s.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elskens, Y. Gaussian Convergence for Stochastic Acceleration of Particles in the Dense Spectrum Limit. J Stat Phys 148, 591–605 (2012). https://doi.org/10.1007/s10955-012-0546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0546-2

Keywords

Navigation