Skip to main content

Advertisement

Log in

On the Free Energy of a Gaussian Membrane Model with External Potentials

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a class of d-dimensional Gaussian lattice field which is known as a model of semi-flexible membrane. We study the free energy of the model with external potentials and show the following:

(1) We consider the model with δ-pinning and prove that the field is always localized when d≥4.

(2) Consider the model confined between two hard walls. We give asymptotics of the free energy as the height of the wall goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolthausen, E., Deuschel, J.-D.: Critical large deviation for Gaussian field in the phase transition regime. Ann. Probab. 21, 1876–1920 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolthausen, E., Deuschel, J.-D., Zeitouni, O.: Absence of a wetting transition for a pinned harmonic crystals in dimensions three and larger. J. Math. Phys. 41, 1211–1223 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bolthausen, E., Ioffe, D.: Harmonic crystal on the wall: a microscopic approach. Commun. Math. Phys. 187, 523–566 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bolthausen, E., Velenik, Y.: Critical behavior of the massless free field at the depinning transition. Commun. Math. Phys. 223, 161–203 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bricmont, J., El Mellouki, A., Fröhlich, J.: Random surfaces in Statistical Mechanics: roughening, rounding, wetting. J. Stat. Phys. 42(5/6), 743–798 (1986)

    Article  ADS  Google Scholar 

  6. Caravenna, F., Deuschel, J.-D.: Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction. Ann. Probab. 36, 2388–2433 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caravenna, F., Deuschel, J.-D.: Scaling limits of (1+1)-dimensional pinning models with Laplacian interaction. Ann. Probab. 37, 903–945 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dunlop, F., Magnen, J., Rivasseau, V., Roche, P.: Pinning of an interface by a weak potential. J. Stat. Phys. 66, 71–98 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Funaki, T.: Stochastic interface models. In: Picard, J. (ed.) Lectures on Probability Theory and Statistics, Ecole d’Eté de Probabilités de Saint-Flour XXXIII, 2003. Lect. Notes Math., vol. 1869, pp. 103–274. Springer, Berlin (2005)

    Chapter  Google Scholar 

  10. Ginibre, J.: General formulation of Griffith’s inequalities. Commun. Math. Phys. 16, 310–328 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  11. Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter, Berlin (1988)

    Book  MATH  Google Scholar 

  12. Hargé, G.: A particular case of correlation inequality for the Gaussian measure. Ann. Probab. 27, 1939–1951 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hryniv, O., Velenik, Y.: Some rigorous results on semiflexible polymers. I. Free and confined polymers. Stoch. Process. Appl. 119, 3081–3100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurt, N.: Entropic repulsion for a class of Gaussian interface models in high dimensions. Stoch. Process. Appl. 117, 23–34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurt, N.: Maximum and entropic repulsion for a Gaussian membrane model in the critical dimension. Ann. Probab. 37, 687–725 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  17. Leiber, S.: Equilibrium statistical mechanics of fluctuating films and membranes. In: Statistical Mechanics of Membranes and Surfaces, 2nd edn., pp. 49–101. World Scientific, Singapore (2004)

    Google Scholar 

  18. Li, W.V., Shao, Q.M.: Gaussian processes: inequalities, small ball probabilities and applications. In: Stochastic Processes: Theory and Methods. Handbook of Statist, vol. 19, pp. 533–597. North-Holland, Amsterdam (2001)

    Chapter  Google Scholar 

  19. Lipowsky, R.: Generic interaction of flexible membranes. In: Structure and Dynamics of Membranes. Handbook of Biological Physics, vol. 1, pp. 521–602. North-Holland, Amsterdam (1995)

    Google Scholar 

  20. Ruiz-Lorenzo, J.J., Cuerno, R., Moro, E., Sánchez, A.: Phase transition in tensionless surfaces. Biophys. Chem. 115, 187–193 (2005)

    Article  Google Scholar 

  21. Sakagawa, H.: Entropic repulsion for a Gaussian lattice field with certain finite range interaction. J. Math. Phys. 44, 2939–2951 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Sakagawa, H.: Bounds on the mass for the high dimensional Gaussian lattice field between two hard walls. J. Stat. Phys. 129, 537–553 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Sakagawa, H.: Confinement of the two dimensional discrete Gaussian free field between two hard walls. Electron. J. Probab. 14, 2310–2327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schechtman, G., Schlumprecht, Th., Zinn, J.: On the Gaussian measure of the intersection. Ann. Probab. 26, 346–357 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Velenik, Y.: Localization and delocalization of random interfaces. Probab. Surv. 3, 112–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for his very useful comments. This work was partially supported by the Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Young Scientists (B), No. 23740086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironobu Sakagawa.

Appendix

Appendix

We consider the Hamiltonian (2). More precisely, consider

$$ \widetilde{H}(\phi) = \kappa_1 \sum _{\substack{ x, y \in\mathbb{Z}^d\\ |x-y|=1}} |\phi_x-\phi_y|^2 + \kappa_2 \sum _{x\in\mathbb{Z}^d}|\varDelta \phi_x |^2.$$
(16)

For simplicity we may assume that \(\kappa_{1}=\frac{\kappa}{8d}\) and \(\kappa_{2}=\frac{1}{2}, \kappa>0\). By the same computation as in introduction, we have

Hence the corresponding Gibbs measure on Λ N coincides with the law of a centered Gaussian field on \(\mathbb{R}^{\varLambda_{N}}\) with the covariance matrix \((-\kappa \varDelta _{N}+ \varDelta ^{2}_{N})^{-1}\). By Brascamp-Lieb inequality,

Also, since the matrices −Δ N and κΔ N commute, we can compute that

Therefore the asymptotics of the variance for the Gibbs measure corresponding to Hamiltonian (16) is similar to that of the ∇ϕ model and the similar result for the ∇ϕ model would hold in this case (though some extra work might be needed).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakagawa, H. On the Free Energy of a Gaussian Membrane Model with External Potentials. J Stat Phys 147, 18–34 (2012). https://doi.org/10.1007/s10955-012-0475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0475-0

Keywords

Navigation