Skip to main content
Log in

Fractal Iso-Contours of Passive Scalar in Two-Dimensional Smooth Random Flows

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A passive scalar field was studied under the action of pumping, diffusion and advection by a 2D smooth flow with Lagrangian chaos. We present theoretical arguments showing that the scalar statistics are not conformally invariant and formulate a new effective semi-analytic algorithm to model scalar turbulence. We then carry out massive numerics of scalar turbulence, focusing on nodal lines. The distribution of contours over sizes and perimeters is shown to depend neither on the flow realization nor on the resolution (diffusion) scale r d for scales exceeding r d . The scalar isolines are found to be fractal/smooth at scales larger/smaller than the pumping scale. We characterize the statistics of isoline bending by the driving function of the Löwner map. That function is found to behave like diffusion with diffusivity independent of the resolution yet, most surprisingly, dependent on the velocity realization and time (beyond the time on which the statistics of the scalar is stabilized).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balkovsky, E., Chertkov, M., Kolokolov, I., Lebedev, V.: Fourth-order correlation function of a randomly advected passive scalar. JETP Lett. 61, 1012 (1995)

    Google Scholar 

  2. Balkovsky, E., et al.: Large-scale properties of passive scalar advection. Phys. Fluids 11, 2269–2279 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of Boolean functions and applications to percolation. Publ. Math. IHES 90, 5–43 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Bernard, D., et al.: Conformal invariance in two-dimensional turbulence. Nat. Phys. 2(2), 124–128 (2006)

    Article  Google Scholar 

  6. Bernard, D., et al.: Inverse turbulent cascades and conformally invariant curves. Phys. Rev. Lett. 98(2), 024501 (2007). doi:10.1103/PhysRevLett.98.024501

    Article  ADS  Google Scholar 

  7. Berry, A.C.: The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Am. Math. Soc. 41, 122–136 (1941)

    Article  Google Scholar 

  8. Cardy, J.: Critical percolation in finite geometries. J. Phys. A 25, 201–206 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  9. Cardy, J.: SLE for theoretical physicists. Ann. Phys. 318, 81–118 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Cardy, J., Ziff, R.: Exact results for the universal area distribution of clusters in percolation, Ising, and Potts models. J. Stat. Phys. 110, 1 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Catrakis, H.J., Dimotakis, P.E.: Scale distributions and fractal dimensions in turbulence. Phys. Rev. Lett. 77(18), 3795–3798 (1996)

    Article  ADS  Google Scholar 

  12. Celani, A., Lanotte, A., Mazzino, A., Vergassola, M.: Universality and saturation of intermittency in passive scalar turbulence. Phys. Rev. Lett. 84, 2385–2388 (2000)

    Article  ADS  Google Scholar 

  13. Constantin, P.: Geometric statistics in turbulence. SIAM Rev. 36(1), 73–98 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Esseen, C.G.: On the Liapunoff limit of error in the theory of probability. Arkiv Mat. Astron. Fysk. 28, 1–19 (1942)

    MathSciNet  MATH  Google Scholar 

  15. Falkovich, G., Gawedzki, K., Vergassola, M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Falkovich, G., Musacchio, S.: Conformal invariance in inverse turbulent cascades. arXiv:1012.3868

  17. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. Wiley, New York (1968)

    MATH  Google Scholar 

  18. Feller, W.: On the Berry–Esseen theorem. Probab. Theory Relat. Fields 10, 261–268 (1968)

    MathSciNet  MATH  Google Scholar 

  19. Fereday, D.R., Haynes, P.H.: Scalar decay in two-dimensional chaotic advection and Batchelor-regime turbulence. Phys. Fluids 16(12), 4359–4370 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  20. Gotoh, T., Nagaki, J., Kaneda, Y.: Passive scalar spectrum in the viscous-convective range in two-dimensional steady turbulence. Phys. Fluids 12(1), 155–168 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Gruzberg, I.A., Kadanoff, L.P.: The Loewner evolution: maps and shapes. J. Stat. Phys. 30, 8459–8469 (2004)

    MathSciNet  Google Scholar 

  22. Jun, Y., Steinberg, V.: Mixing of passive tracers in the decay Batchelor regime of a channel flow. Phys. Fluids 22, 123101 (2010)

    Article  ADS  Google Scholar 

  23. Kennedy, T.: Computing the Loewner driving process of random curves in the half plane. J. Stat. Phys. 131, 803–819 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Nastrom, G., Gage, K.: The kinetic energy spectrum of large- and mesoscale atmospheric processes. Tellus, Ser. A 35, 383–386 (1983)

    Article  ADS  Google Scholar 

  25. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C.R. Acad. Sci. I Math. 333, 239–244 (2001)

    ADS  MATH  Google Scholar 

  27. Sreenivasan, K.R.: On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. A 434, 165–182 (1991)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the NSF grant PHY05-51164 at KITP, and by the grants of BSF, ISF and Minerva foundation at the Weizmann Institute. We benefited from discussions with I. Binder, G. Boffetta, D. Dolgopyat, A. Celani, K. Khanin, J.P. Eckmann, S. Smirnov and C. Connaughton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Vucelja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vucelja, M., Falkovich, G. & Turitsyn, K.S. Fractal Iso-Contours of Passive Scalar in Two-Dimensional Smooth Random Flows. J Stat Phys 147, 424–435 (2012). https://doi.org/10.1007/s10955-012-0474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0474-1

Keywords

Navigation