Skip to main content
Log in

Reconstructing Free Energy Profiles from Nonequilibrium Relaxation Trajectories

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Reconstructing free energy profiles is an important problem in bimolecular reactions, protein folding or allosteric conformational changes. Nonequilibrium trajectories are readily measured experimentally, but their statistical significance and relation to equilibrium system properties still call for rigorous methods of assessment and interpretation. Here we introduce methods to compute the equilibrium free energy profile of a given variable from a set of short nonequilibrium trajectories, obtained by externally driving a system out of equilibrium and subsequently observing its relaxation. This protocol is not suitable for the Jarzynski equality since the irreversible work on the system is instantaneous. Assuming that the variable of interest satisfies an overdamped Langevin equation, which is frequently used for modeling biomolecular processes, we show that the trajectories sample a nonequilibrium stationary distribution that can be calculated in closed form. This allows for the estimation of the free energy via an inversion procedure that is analogous to that used in equilibrium and bypasses more complicated path integral methods, which we derive for comparison. We generalize the inversion procedure to systems with a diffusion constant that depends on the reaction coordinate, as is the case in protein folding, as well as to protocols in which the trajectories are initiated at random points. Using only a statistical pool of tens of synthetic trajectories, we demonstrate the versatility of these methods by reconstructing double and multi-well potentials, as well as a proposed profile for the hydrophobic collapse of a protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kollman, P.: Chem. Rev. 93(7), 2395 (1993)

    Article  Google Scholar 

  2. Dobson, C., Karplus, M.: Curr. Opin. Struct. Biol. 9(1), 92 (1999)

    Article  Google Scholar 

  3. Frauenfelder, H., Wolynes, P., Austin, R.: Rev. Mod. Phys. 71(2), S419 (1999)

    Article  Google Scholar 

  4. Dill, K., Bromberg, S.: Molecular Driving Forces. Garland Science, New York (2003)

    Google Scholar 

  5. Onuchic, J.N., Wolynes, P.G.: Curr. Opin. Struct. Biol. 14, 70 (2004)

    Article  Google Scholar 

  6. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, New York (2002)

    Google Scholar 

  7. Fatt, P., Katz, B.: J. Physiol. 117(1), 109 (1952)

    Google Scholar 

  8. Woodside, M.T., Behnke-Parks, W.M., Larizadeh, K., Travers, K., Herschlag, D., Block, S.M.: Proc. Natl. Acad. Sci. USA 103(16), 6190 (2006)

    Article  ADS  Google Scholar 

  9. Gebhardt, J., Bornschlögl, T., Rief, M.: Proc. Natl. Acad. Sci. USA 107(5), 2013 (2010)

    Article  ADS  Google Scholar 

  10. Finkelstein, A.V., Ptitsyn, O.B.: Protein Physics: A Course of Lectures. Academic Press, Amsterdam (2002)

    Google Scholar 

  11. Roux, B.: Comput. Phys. Commun. 91, 275 (1995)

    Article  ADS  Google Scholar 

  12. Jarzynski, C.: Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  13. Jarzynski, C.: Phys. Rev. E 56, 5018 (1997)

    Article  ADS  Google Scholar 

  14. Crooks, G.: J. Stat. Phys. 90(5), 1481 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Crooks, G.E.: Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  16. Hummer, G., Szabo, A.: Proc. Natl. Acad. Sci. USA 98(7), 3658 (2001)

    Article  ADS  Google Scholar 

  17. Liphardt, J., Dumont, S., Smith, S.B., Tinoco Jr., I., Bustamante, C.: Science 296(5574), 1832 (2002)

    Article  ADS  Google Scholar 

  18. Collin, D., Ritort, F., Jarzynski, C., Smith, S.B., Tinoco Jr., I., Bustamante, C.: Nature 437(7056), 231 (2005)

    Article  ADS  Google Scholar 

  19. Minh, D.D.L., Adib, A.B.: Phys. Rev. Lett. 100(18), 180602 (2008)

    Article  ADS  Google Scholar 

  20. Hummer, G.: J. Chem. Phys. 14(17), 7330 (2001)

    Article  ADS  Google Scholar 

  21. Oberhofer, H., Dellago, C., Geissler, P.L.: J. Phys. Chem. B 109(14), 6902 (2005)

    Article  Google Scholar 

  22. Oberhofer, H., Dellago, C.: J. Comput. Chem. 30(11), 1726 (2009)

    Article  Google Scholar 

  23. Minh, D.D.L., Chodera, J.D.: J. Chem. Phys. 131(13), 134110 (2009)

    Article  ADS  Google Scholar 

  24. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J.: Pflügers Arch. 391, 85 (1981)

    Article  Google Scholar 

  25. Fernandez, J.M., Li, H.: Science 303(5664), 1674 (2004)

    Article  ADS  Google Scholar 

  26. Walther, K.A., Grater, F., Dougan, L., Badilla, C.L., Berne, B.J., Fernandez, J.M.: Proc. Natl. Acad. Sci. USA 104, 7916 (2007)

    Article  ADS  Google Scholar 

  27. Berkovich, R., Garcia-Manyes, S., Urbakh, M., Klafter, J., Fernandez, J.M.: Biophys. J. 98, 2692 (2010)

    Article  ADS  Google Scholar 

  28. Ball, G., Chou, T.: Inverse Probl. 40(4), 1053 (2004)

    Article  ADS  Google Scholar 

  29. Best, R.B., Hummer, G.: Proc. Natl. Acad. Sci. USA 107(3), 1088 (2010)

    Article  ADS  Google Scholar 

  30. Stuart, A.M.: Acta Numer. 19, 451 (2010)

    Article  MathSciNet  Google Scholar 

  31. Pokern, Y., Stuart, A., Vanden-Eijnden, E.: Multiscale Model. Simul. 8, 69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Durrett, R.: Stochastic Calculus. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  33. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, vol. 24. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Vanden-Eijnden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Brujić, J. & Vanden-Eijnden, E. Reconstructing Free Energy Profiles from Nonequilibrium Relaxation Trajectories. J Stat Phys 144, 344–366 (2011). https://doi.org/10.1007/s10955-011-0242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0242-7

Keywords

Navigation