Skip to main content
Log in

Tensor Network States and Geometry

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Tensor network states are used to approximate ground states of local Hamiltonians on a lattice in D spatial dimensions. Different types of tensor network states can be seen to generate different geometries. Matrix product states (MPS) in D=1 dimensions, as well as projected entangled pair states (PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the lattice model; in contrast, the multi-scale entanglement renormalization ansatz (MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on homogeneous tensor networks, where all the tensors in the network are copies of the same tensor, and argue that certain structural properties of the resulting many-body states are preconditioned by the geometry of the tensor network and are therefore largely independent of the choice of variational parameters. Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for D=1 systems is seen to be determined by the structure of geodesics in the physical and holographic geometries, respectively; whereas the asymptotic scaling of entanglement entropy is seen to always obey a simple boundary law—that is, again in the relevant geometry. This geometrical interpretation offers a simple and unifying framework to understand the structural properties of, and helps clarify the relation between, different tensor network states. In addition, it has recently motivated the branching MERA, a generalization of the MERA capable of reproducing violations of the entropic boundary law in D>1 dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fannes, M., Nachtergaele, B., Werner, R.F.: Commun. Math. Phys. 144, 443 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ostlund, S., Rommer, S.: Phys. Rev. Lett. 75, 3537 (1995)

    Article  ADS  Google Scholar 

  3. Rommer, S., Ostlund, S.: Phys. Rev. B 55, 2164 (1997)

    Article  ADS  Google Scholar 

  4. Perez-Garcia, D., Verstraete, F., Wolf, M.M., Cirac, J.I.: Quantum Inf. Comput. 7, 401 (2007)

    MathSciNet  MATH  Google Scholar 

  5. White, S.R.: Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  6. White, S.R.: Phys. Rev. B 48, 10345 (1993)

    Article  ADS  Google Scholar 

  7. Schollwoeck, U.: Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  Google Scholar 

  8. Schollwoeck, U.: Ann. Phys. 326, 96 (2011)

    Article  ADS  MATH  Google Scholar 

  9. Vidal, G.: Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  10. Vidal, G.: Phys. Rev. Lett. 93, 040502 (2004)

    Article  ADS  Google Scholar 

  11. Daley, A.J., Kollath, C., Schollweock, U., Vidal, G.: J. Stat. Mech. Theory Exp., P04005 (2004)

  12. White, S.R., Feiguin, A.E.: Phys. Rev. Lett. 93, 076401 (2004)

    Article  ADS  Google Scholar 

  13. Shi, Y., Duan, L.-M., Vidal, G.: Phys. Rev. A 74, 022320 (2006)

    Article  ADS  Google Scholar 

  14. Alba, V., Tagliacozzo, L., Calabrese, P.: arXiv:1103.3166v1 [cond-mat.stat-mech]

  15. Vidal, G.: Phys. Rev. Lett. 99, 220405 (2007)

    Article  ADS  Google Scholar 

  16. Vidal, G.: Phys. Rev. Lett. 101, 110501 (2008)

    Article  ADS  Google Scholar 

  17. Evenbly, G., Vidal, G.: Phys. Rev. B 79, 144108 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  18. Giovannetti, V., Montangero, S., Fazio, R.: Phys. Rev. Lett. 101, 180503 (2008)

    Article  ADS  Google Scholar 

  19. Pfeifer, R.N.C., Evenbly, G., Vidal, G.: Phys. Rev. A 79, 040301(R) (2009)

    MathSciNet  ADS  Google Scholar 

  20. Vidal, G.: In: Carr, L.D. (ed.) Understanding Quantum Phase Transitions. Taylor & Francis, Boca Raton (2010)

    Google Scholar 

  21. Verstraete, F., Cirac, J.I.: arXiv:cond-mat/0407066v1 (2004)

  22. Sierra, G., Martin-Delgado, M.A.: arXiv:cond-mat/9811170v3 (1998)

  23. Nishino, T., Okunishi, K.: J. Phys. Soc. Jpn. 67, 3066 (1998)

    Article  ADS  Google Scholar 

  24. Nishio, Y., Maeshima, N., Gendiar, A., Nishino, T.: arXiv:cond-mat/0401115

  25. Murg, V., Verstraete, F., Cirac, J.I.: Phys. Rev. A 75, 033605 (2007)

    Article  ADS  Google Scholar 

  26. Jordan, J., Orus, R., Vidal, G., Verstraete, F., Cirac, J.I.: Phys. Rev. Lett. 101, 250602 (2008)

    Article  ADS  Google Scholar 

  27. Gu, Z.-C., Levin, M., Wen, X.-G.: Phys. Rev. B 78, 205116 (2008)

    Article  ADS  Google Scholar 

  28. Jiang, H.C., Weng, Z.Y., Xiang, T.: Phys. Rev. Lett. 101, 090603 (2008)

    Article  ADS  Google Scholar 

  29. Xie, Z.Y., Jiang, H.C., Chen, Q.N., Weng, Z.Y., Xiang, T.: Phys. Rev. Lett. 103, 160601 (2009)

    Article  ADS  Google Scholar 

  30. Murg, V., Verstraete, F., Cirac, J.I.: Phys. Rev. B 79, 195119 (2009)

    Article  ADS  Google Scholar 

  31. Tagliacozzo, L., Evenbly, G., Vidal, G.: Phys. Rev. B 80, 235127 (2009)

    Article  ADS  Google Scholar 

  32. Murg, V., Verstraete, F., Legeza, O., Noack, R.M.: Phys. Rev. B 82, 205105 (2010)

    Article  ADS  Google Scholar 

  33. Evenbly, G., Vidal, G.: Phys. Rev. B 81, 235102 (2010)

    Article  ADS  Google Scholar 

  34. Evenbly, G., Vidal, G.: New J. Phys. 12, 025007 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  35. Aguado, M., Vidal, G.: Phys. Rev. Lett. 100, 070404 (2008)

    Article  ADS  Google Scholar 

  36. Cincio, L., Dziarmaga, J., Rams, M.M.: Phys. Rev. Lett. 100, 240603 (2008)

    Article  ADS  Google Scholar 

  37. Evenbly, G., Vidal, G.: Phys. Rev. Lett. 102, 180406 (2009)

    Article  ADS  Google Scholar 

  38. Koenig, R., Reichardt, B.W., Vidal, G.: Phys. Rev. B 79, 195123 (2009)

    Article  ADS  Google Scholar 

  39. Evenbly, G., Vidal, G.: Phys. Rev. Lett. 104, 187203 (2010)

    Article  ADS  Google Scholar 

  40. Corboz, P., Evenbly, G., Verstraete, F., Vidal, G.: Phys. Rev. A 81, 010303(R) (2010)

    Article  ADS  Google Scholar 

  41. Kraus, C.V., Schuch, N., Verstraete, F., Cirac, J.I.: Phys. Rev. A 81, 052338 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  42. Pineda, C., Barthel, T., Eisert, J.: Phys. Rev. A 81, 050303(R) (2010)

    Article  ADS  Google Scholar 

  43. Corboz, P., Vidal, G.: Phys. Rev. B 80, 165129 (2009)

    Article  ADS  Google Scholar 

  44. Barthel, T., Pineda, C., Eisert, J.: Phys. Rev. A 80, 042333 (2009)

    Article  ADS  Google Scholar 

  45. Shi, Q.-Q., Li, S.-H., Zhao, J.-H., Zhou, H.-Q.: arXiv:0907.5520v1 [cond-mat.str-el] (2009)

  46. Li, S.-H., Shi, Q.-Q., Zhou, H.-Q.: arXiv:1001.3343v1 [cond-mat.supr-con] (2010)

  47. Corboz, P., Orus, R., Bauer, B., Vidal, G.: Phys. Rev. B 81, 165104 (2010)

    Article  ADS  Google Scholar 

  48. Pizorn, I., Verstraete, F.: Phys. Rev. B 81, 245110 (2010)

    Article  ADS  Google Scholar 

  49. Gu, Z.-C., Verstraete, F., Wen, X.-G.: arXiv:1004.2563v1 [cond-mat.str-el] (2010)

  50. Corboz, P., Jordan, J., Vidal, G.: Phys. Rev. B 82, 245119 (2010)

    Article  ADS  Google Scholar 

  51. Pollmann, F., Turner, A.M., Berg, E., Oshikawa, M.: Phys. Rev. B 81, 064439 (2010)

    Article  ADS  Google Scholar 

  52. Chen, X., Gu, Z.-C., Wen, X.-G.: Phys. Rev. B 83, 035107 (2011)

    Article  ADS  Google Scholar 

  53. Schuch, N., Perez-Garcia, D., Cirac, I.: arXiv:1010.3732

  54. Chen, X., Gu, Z.-C., Wen, X.-G.: arXiv:1103.3323

  55. Hastings, M.B.: J. Stat. Mech. 2007, P08024 (2007)

    Article  MathSciNet  Google Scholar 

  56. Hastings, M.B.: Phys. Rev. B 76, 035114 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  57. Buerschaper, O., Aguado, M., Vidal, G.: Phys. Rev. B 79, 085119 (2009)

    Article  ADS  Google Scholar 

  58. Gu, Z.-C., Levin, M., Swingle, B., Wen, X.-G.: Phys. Rev. B 79, 085118 (2009)

    Article  ADS  Google Scholar 

  59. Evenbly, G., Vidal, G.: Branching MERA. In preparation

  60. Hastings, M.B.: Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  61. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  62. Di Francesco, P., Mathieu, P., Senechal, D.: Conformal Field Theory. Springer, New York (1997)

    Book  MATH  Google Scholar 

  63. Srednicki, M.: Phys. Rev. Lett. 71, 666–669 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Latorre, J.I., Rico, E., Vidal, G.: Quantum Inf. Comput. 4, 48–92 (2004)

    MathSciNet  MATH  Google Scholar 

  65. Plenio, M.B., Eisert, J., Dreissig, J., Cramer, M.: Phys. Rev. Lett. 94, 060503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  66. Bravyi, S., Hastings, M.B., Verstraete, F.: Phys. Rev. Lett. 97, 050401 (2006)

    Article  ADS  Google Scholar 

  67. Eisert, J., Osborne, T.J.: Phys. Rev. Lett. 97, 150404 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  68. Masanes, L.: Phys. Rev. A 80, 052104 (2009)

    Article  ADS  Google Scholar 

  69. Eisert, J., Cramer, M., Plenio, M.B.: Rev. Mod. Phys. 82, 277 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. Holzhey, C., Larsen, F., Wilczek, F.: Nucl. Phys. B 424, 443–467 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. Callan, C.G., Wilczek, F.: Phys. Lett. B 333, 55–61 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  72. Fiola, T.M., Preskill, J., Strominger, A., Trivedi, S.P.: Phys. Rev. D 50, 3987–4014 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  73. Vidal, G., et al.: Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  74. Wolf, M.M.: Phys. Rev. Lett. 96, 010404 (2006)

    Article  ADS  Google Scholar 

  75. Gioev, D., Klich, I.: Phys. Rev. Lett. 96, 100503 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  76. Li, W., Ding, L., Yu, R., Roscilde, T., Haas, S.: Phys. Rev. B 74, 073103 (2006)

    Article  ADS  Google Scholar 

  77. Barthel, T., Chung, M.-C., Schollwoeck, U.: Phys. Rev. A 74, 022329 (2006)

    Article  ADS  Google Scholar 

  78. Swingle, B.: arXiv:1002.4635 (2010)

  79. Swingle, B.: arXiv:0908.1724 (2009)

  80. Motrunich, O., Fisher, M.: Phys. Rev. B 75, 235116 (2007)

    Article  ADS  Google Scholar 

  81. Senthil, T.: Phys. Rev. B 78, 035103 (2008)

    Article  ADS  Google Scholar 

  82. Liu, H., McGreevy, J., Vegh, D.: arXiv:0903.2477 (2009)

  83. Jin, B.-Q., Korepin, V.E.: J. Stat. Phys. 116, 79–95 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. Calabrese, P., Cardy, J.: J. Stat. Mech. 2004, P06002 (2004)

    Article  Google Scholar 

  85. Calabrese, P., Cardy, J.: Int. J. Quantum Inf. 4, 429 (2006)

    Article  MATH  Google Scholar 

  86. Kitaev, A., Preskill, J.: Phys. Rev. Lett. 96, 110404 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  87. Levin, M., Wen, X.-G.: Phys. Rev. Lett. 96, 110405 (2006)

    Article  ADS  Google Scholar 

  88. Maldecena, J.M.: Adv. Theor. Math. Phys. 2, 231 (1998)

    MathSciNet  ADS  Google Scholar 

  89. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Phys. Lett. B 428, 105 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  90. Witten, E.: Adv. Theor. Math. Phys. 2, 253 (1998)

    MathSciNet  MATH  Google Scholar 

  91. Swingle, B.: arXiv:0905.1317

  92. Verstraete, F., Wolf, M.M., Perez-Garcia, D., Cirac, J.I.: Phys. Rev. Lett. 96, 220601 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  93. Vidal, G.: arXiv:quant-ph/0610099v1

  94. Ryu, S., Takayanagi, T.: Phys. Rev. Lett. 96, 181602 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  95. Ryu, S., Takayanagi, T.: J. High Energy Phys. 0608, 045 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  96. Nishioka, T., Ryu, S., Takayanagi, T.: J. Phys. A 42, 504008 (2009)

    Article  MathSciNet  Google Scholar 

  97. Barthel, T., Kliesch, M., Eisert, J.: Phys. Rev. Lett. 105, 010502 (2010)

    Article  ADS  Google Scholar 

  98. Tagliacozzo, L., de Oliveira, T.R., Iblisdir, S., Latorre, J.I.: Phys. Rev. B 78, 024410 (2008)

    Article  ADS  Google Scholar 

  99. Nishino, T., Okunishi, K., Kikuchi, M.: Phys. Lett. A 213, 69 (1996)

    Article  ADS  Google Scholar 

  100. Pollmann, F., Mukerjee, S., Turner, A., Moore, J.E.: Phys. Rev. Lett. 102, 255701 (2009)

    Article  ADS  Google Scholar 

  101. Liang, S., Pang, H.: Phys. Rev. B 49, 9214 (1994)

    Article  ADS  Google Scholar 

  102. White, S.R., Scalapino, D.J.: Phys. Rev. Lett. 80, 1272 (1998)

    Article  ADS  Google Scholar 

  103. Xiang, T., Lou, J., Su, Z.: Phys. Rev. B 64, 104414 (2001)

    Article  ADS  Google Scholar 

  104. White, S.R., Chernyshev, A.L.: Phys. Rev. Lett. 99, 127004 (2007)

    Article  ADS  Google Scholar 

  105. Yan, S., Huse, D.A., White, S.R.: arXiv:1011.6114v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evenbly, G., Vidal, G. Tensor Network States and Geometry. J Stat Phys 145, 891–918 (2011). https://doi.org/10.1007/s10955-011-0237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0237-4

Keywords

Navigation