Skip to main content
Log in

Diffusive Limit of a Two Dimensional Kinetic System of Partially Quantized Particles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A quantum-classical coupled system which models the diffusive transport of electrons partially confined in semiconductors nanostructures was presented in Ben Abdallah and Méhats (Proc. Edinb. Math. Soc. 49:513–549, 2006). In this model, electrons are assumed to behave like wave in the confinement direction and to have a classical behaviour in a diffusive regime in the transport direction parallel to the electron gas. It was formally derived from a kinetic system for partially quantized particles thanks to a diffusive limit when the mean free path becomes small with respect to the macroscopic length scale. This paper is devoted to the rigorous study of this limit for a transport in one dimension. In the transport direction, the motion of particles is described by a 1D Boltzmann equation. A Boltzmann-Schrödinger-Poisson system is then considered. Existence of renormalized solutions relying on the study of a quasistatic Schrödinger-Poisson system and on an entropy estimate is established. Its diffusive limit is then considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamical limits of kinetic equations, II: convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46(5), 667–753 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben Abdallah, N.: Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system. Math. Methods Appl. Sci. 17(6), 451–476 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37(7), 3306–3333 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Ben Abdallah, N., Méhats, F.: On a Vlasov-Schrödinger-Poisson model. Commun. Partial Differ. Equ. 29(1–2), 173–206 (2004)

    Article  MATH  Google Scholar 

  5. Ben Abdallah, N., Méhats, F., Vauchelet, N.: Diffusive transport of partially quantized particles: existence uniqueness and long time behaviour. Proc. Edinb. Math. Soc. 49, 513–549 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben Abdallah, N., Tayeb, M.L.: Diffusion approximation for the one dimensional Boltzmann-Poisson system. Discrete Contin. Dyn. Syst. Ser. B 4(4), 1129–1142 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blakemore, J.S.: Semiconductors Statistics. Pergamon, Elmsford (1962)

    Google Scholar 

  8. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Series in Appl. Math. Gauthier-Villars, Paris (2000)

    MATH  Google Scholar 

  9. Degond, P., Goudon, T., Poupaud, F.: Diffusion limit for nonhomogeneous and non-micro-reversible processes. Indiana Univ. Math. J. 49(3), 1175–1198 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Diperna, R.J., Lions, P.L.: On the Cauchy problem for the Boltzmann equation; global existence and weak stability. Ann. Math. 130, 707–741 (1989)

    Article  MathSciNet  Google Scholar 

  11. Diperna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: L p Spaces. Springer Monographs in Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  13. Golse, F., Levermore, C.D.: Stokes-Fourier and acoustic limits for the Boltzmann equations: convergence proofs. Commun. Pure Appl. Math. 55(3), 336–393 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Golse, F., Poupaud, F.: Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac. Asymptot. Anal. 6, 135–169 (1992)

    MATH  MathSciNet  Google Scholar 

  15. Golse, F., Saint-Raymond, L.: The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Golse, F., Lions, P.L., Perthame, B., Sentis, R.: Regularity of the moments of solution of a transport equation. J. Funct. Anal. 76, 110–125 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kesten, H., Papanicolaou, G.C.: A limit theorem for turbulent diffusion. Commun. Math. Phys. 65(2), 97–128 (1979)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. III. J. Math. Kyoto Univ. 34(3), 539–584 (1994)

    MATH  MathSciNet  Google Scholar 

  19. Lions, P.-L., Toscani, G.: Diffusive limit for finite velocity Boltzmann kinetic models. Rev. Mat. Iberoam. 13(3), 473–513 (1997)

    MATH  MathSciNet  Google Scholar 

  20. Masmoudi, N., Saint-Raymond, L.: From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. Commun. Pure Appl. Math. 56(9), 1263–1293 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Masmoudi, N., Tayeb, M.L.: Diffusion limit for semiconductor Boltzmann-Poisson system. SIAM J. Math. Anal. 38(6), 1788–1807 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Markowich, P.A., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, Berlin (1990)

    MATH  Google Scholar 

  23. Mischler, S.: On the trace problem for the solutions of the Vlasov equation. Commun. Partial Differ. Equ. 25(7–8), 1415–1443 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nier, F.: A stationary Schrödinger-Poisson system from the modelling of electronic devices. Forum Math. 2(5), 489–510 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nier, F.: A variational formulation of Schrödinger-Poisson systems in dimension d≤3. Commun. Partial Differ. Equ. 18(7–8), 1125–1147 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pietra, P., Vauchelet, N.: Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET. J. Comput. Elec. 7, 52–65 (2008)

    Article  Google Scholar 

  27. Polizzi, E., Ben Abdallah, N.: Subband decomposition approach for the simulation of quantum electron transport in nanostructures. J. Comput. Phys. 202, 150–180 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, San Diego (1987)

    MATH  Google Scholar 

  29. Poupaud, F.: Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers. Asymptot. Anal. 4, 293–317 (1991)

    MATH  MathSciNet  Google Scholar 

  30. Saint-Raymond, L.: From the BGK model to the Navier-Stokes equations. Ann. Sci. Ecole Norm. Super., 4ème Sér. 36, 271–317 (2003)

    MATH  MathSciNet  Google Scholar 

  31. Shockley, W., Read, W.T.: Statistics of recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  MATH  ADS  Google Scholar 

  32. Seeger, K.: Semiconductor Physics. An Introduction, 6th edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  33. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)

    Google Scholar 

  34. Vauchelet, N.: A coupled quantum-classical model for the diffusive transport of partially quantized particles. Math. Models Methods Appl. Sci. 18(4), 489–510 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Villani, C.: Limites hydrodynamiques de l’équation de Boltzmann. In: Séminaire Bourbaki, 53ème année, vol. 893 (2000–2001)

  36. Venugopal, R., Ren, Z., Datta, S., Lundstrom, M.S.: Simulating quantum transport in nanoscale transistor: real versus mode-space approaches. J. Appl. Phys. 92(7), 3730–3729 (2002)

    Article  ADS  Google Scholar 

  37. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective mass approximation. J. Appl. Phys. 96(3), 2192–2203 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Vauchelet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vauchelet, N. Diffusive Limit of a Two Dimensional Kinetic System of Partially Quantized Particles. J Stat Phys 139, 882–914 (2010). https://doi.org/10.1007/s10955-010-9970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9970-3

Keywords

Navigation