Skip to main content
Log in

A Fast Algorithm for the First-Passage Times of Gauss-Markov Processes with Hölder Continuous Boundaries

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Even for simple diffusion processes, treating first-passage problems analytically proves intractable for generic barriers and existing numerical methods are inaccurate and computationally costly. Here, we present a novel numerical method that is faster and has more tightly controlled accuracy. Our algorithm is a probabilistic variant of dichotomic search for the computation of first passage times through non-negative homogeneously Hölder continuous boundaries by Gauss-Markov processes. These include the Ornstein-Uhlenbeck process underlying the ubiquitous “leaky integrate-and-fire” model of neuronal excitation. Our method evaluates discrete points in a sample path exactly, and refines this representation recursively only in regions where a passage is rigorously estimated to be probable (e.g. when close to the boundary).

As a result, for a given temporal accuracy in the location of the first passage time, our method is orders of magnitude faster than direct forward integration such as Euler or stochastic Runge-Kutta schemata. Moreover, our algorithm rigorously bounds the probability that such crossings are not true first-passage times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alili, L., Patie, P., Pedersen, J.L.: Representations of the first hitting time density of an Ornstein-Uhlenbeck process. Stoch. Models 21(4), 967–980 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bao, J., Abe, Y., Zhuo, Y.: An integral algorithm for numerical integration of one-dimensional additive colored noise problems. J. Stat. Phys. 90(3), 1037–1045 (1998). doi:10.1023/A:1023201725795

    MATH  ADS  Google Scholar 

  3. Bouleau, N., Lépingle, D.: Numerical methods for stochastic processes. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York (1994)

    MATH  Google Scholar 

  4. Burkitt, A.: A review of the integrate-and-fire neuron model: Ii. inhomogeneous synaptic input and network properties. Biol. Cybern. 95(2), 97–112 (2006). doi:10.1007/s00422-006-0082-8

    Article  MATH  MathSciNet  Google Scholar 

  5. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol. Cybern. 95(1), 1–19 (2006). doi:10.1007/s00422-006-0068-6

    Article  MATH  MathSciNet  Google Scholar 

  6. Cecchi, G.A., Magnasco, M.O.: Negative resistance and rectification in Brownian transport. Phys. Rev. Lett. 76(11), 1968–1971 (1996). doi:10.1103/PhysRevLett.76.1968

    Article  ADS  Google Scholar 

  7. DiCesare, J., Mcleish, D.: Simulation of jump diffusions and the pricing of options. Insur., Math. Econ. 43(3), 316–326 (2008). doi:10.1016/j.insmatheco.2008.06.001. URL http://www.sciencedirect.com/science/article/B6V8N-4SSG4PR-1/2/333e62e7c38787453b5bfc5392891dd4

    Article  MATH  MathSciNet  Google Scholar 

  8. Ditlevsen, S., Lansky, P.: Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. Phys. Rev. E 71(1), 011,907 (2005). doi:10.1103/PhysRevE.71.011907

  9. Doob, J.L.: Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 20, 393–403 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gaines, J.G., Lyons, T.J.: Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57(5), 1455–1484 (1997). doi:10.1137/S0036139995286515

    Article  MATH  MathSciNet  Google Scholar 

  11. Gillespie, D.T.: Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys. Rev. E 54(2), 2084–2091 (1996). doi:10.1103/PhysRevE.54.2084

    Article  MathSciNet  ADS  Google Scholar 

  12. Giraudo, M.T., Sacerdote, L., Zucca, C.: A Monte Carlo method for the simulation of first passage times of diffusion processes. Methodol. Comput. Appl. Probab. 3(2), 215–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gobet, E.: Weak approximation of killed diffusion using Euler schemes. Stoch. Process. Appl. 87(2), 167–197 (2000). doi:10.1016/S0304-4149(99)00109-X. URL http://www.sciencedirect.com/science/article/B6V1B-405KF32-1/2/3d79c4e26426d724ed2ea670b406b3a6

    Article  MATH  MathSciNet  Google Scholar 

  14. Gobet, E., Menozzi, S.: Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme. Stoch. Process. Appl. 112(2), 201–223 (2004) doi:10.1016/j.spa.2004.03.002. URL http://www.sciencedirect.com/science/article/B6V1B-4C4VXT3-1/2/a1783ee30dc66ded7af8f604e017bc36

    Article  MATH  MathSciNet  Google Scholar 

  15. Hida, T.: Canonical representations of Gaussian processes and their applications. Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33, 109–155 (1960/1961)

    MathSciNet  Google Scholar 

  16. Honeycutt, R.L.: Stochastic Runge-Kutta algorithms. i. white noise. Phys. Rev. A 45(2), 600–603 (1992). doi:10.1103/PhysRevA.45.600

    Article  ADS  Google Scholar 

  17. Kac, M., Siegert, A.J.F.: An explicit representation of a stationary Gaussian process. Ann. Math. Stat. 18, 438–442 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  18. van Kampen, N.G.: Stochastic processes in physics and chemistry. Lecture Notes in Mathematics, vol. 888. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  19. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, second edn. Graduate Texts in Mathematics, vol. 113. Springer, New York (1991)

    MATH  Google Scholar 

  20. Lansky, P., Ditlevsen, S.: A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models. Biol. Cybern. 99(4–5), 253–262 (2008). doi:10.1007/s00422-008-0237-x

    Article  MATH  MathSciNet  Google Scholar 

  21. Lánský, P.L., Lánská, V.: Diffusion approximation of the neuronal model with synaptic reversal potentials. Biol. Cybern. 56(1), 19–26 (1987). doi:10.1007/BF00333064

    Article  MATH  Google Scholar 

  22. Lehmann, A.: Smoothness of first passage time distributions and a new integral equation for the first passage time density of continuous Markov processes. Adv. Appl. Probab. 34(4), 869–887 (2002)

    Article  MATH  ADS  Google Scholar 

  23. Lo, C.F.: Exact solutions of the Fokker-Planck equations with moving boundaries. Ann. Phys. 319(2), 326–332 (2005)

    Article  MATH  ADS  Google Scholar 

  24. Lo, C.F., Hui, C.H.: Computing the first passage time density of a time-dependent Ornstein-Uhlenbeck process to a moving boundary. Appl. Math. Lett. 19(12), 1399–1405 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Metwally, S.A.K., Atiya, A.F.: Using Brownian bridge for fast simulation of jump-diffusion processes and barrier options. J. Deriv. 10, 43–54 (2002)

    Article  Google Scholar 

  26. Mota-Furtado, F., O’Mahony, P.F.: Exact propagator for generalized Ornstein-Uhlenbeck processes. Phys. Rev. E 75(4), 041102 (2007). doi:10.1103/PhysRevE.75.041102. URL http://link.aps.org/abstract/PRE/v75/e041102

    Google Scholar 

  27. Platen, E.: An introduction to numerical methods for stochastic differential equations. Research Paper Series 6, Quantitative Finance Research Centre, University of Technology, Sydney (1999). URL http://ideas.repec.org/p/uts/rpaper/6.html

  28. Pötzelberger, K., Wang, L.: Boundary crossing probability for Brownian motion. J. Appl. Probab. 38(1), 152–164 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Renault, O., Scaillet, O., Leblanc, B.: A correction note on the first passage time of an Ornstein-Uhlenbeck process to a boundary. Finance Stoch. 4(1), 109–111 (2000). URL http://ideas.repec.org/a/spr/finsto/v4y2000i1p109-111.html

    Article  MATH  Google Scholar 

  30. Ricciardi, L.M., Sacerdote, L.: The Ornstein-Uhlenbeck process as a model for neuronal activity. Biol. Cybern. 35(1), 1–9 (1979). doi:10.1007/BF01845839

    Article  MATH  Google Scholar 

  31. Ricciardi, L.M., Sato, S.: First-passage-time density and moments of the Ornstein-Uhlenbeck process. J. Appl. Probab. 25(1), 43–57 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Risken, H.: The Fokker-Planck equation, second edn. Springer Series in Synergetics, vol. 18. Springer, Berlin (1989). Methods of solution and applications

    Book  MATH  Google Scholar 

  33. Römisch, W., Winkler, R.: Stepsize control for mean-square numerical methods for stochastic differential equations with small noise. SIAM J. Sci. Comput. 28(2), 604–625 (2006). doi:10.1137/030601429

    Article  MATH  MathSciNet  Google Scholar 

  34. Siegert, A.J.F.: On the first passage time probability problem. Phys. Rev. (2) 81, 617–623 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Taillefumier, T.: A discrete construction for Gaussian Markov processes. ArXiv e-prints (2008)

  36. Taillefumier, T., Magnasco M.: A Haar-like construction for the Ornstein Uhlenbeck process. J. Stat. Phys. 132(2), 397–415 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  37. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion. Phys. Rev. 36(5), 823–841 (1930). doi:10.1103/PhysRev.36.823

    Article  MATH  ADS  Google Scholar 

  38. Wang, L., Pötzelberger, K.: Boundary crossing probability for Brownian motion and general boundaries. J. Appl. Probab. 34(1), 54–65 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, L., Pötzelberger, K.: Crossing probabilities for diffusion processes with piecewise continuous boundaries. Methodol. Comput. Appl. Probab. 9(1), 21–40 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang, D., Melnik, R.V.N.: First passage time for multivariate jump-diffusion processes in finance and other areas of applications. Appl. Stoch. Models Bus. Ind. 25(5), 565–582 (2009). doi:10.1002/asmb.v25:5

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Taillefumier.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taillefumier, T., Magnasco, M.O. A Fast Algorithm for the First-Passage Times of Gauss-Markov Processes with Hölder Continuous Boundaries. J Stat Phys 140, 1130–1156 (2010). https://doi.org/10.1007/s10955-010-0033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0033-6

Keywords

Navigation