Skip to main content
Log in

Symmetry of the Unsteady Linearized Boltzmann Equation in a Fixed Bounded Domain

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A symmetric relation between time-dependent problems described by the linearized Boltzmann equation is obtained for a gas in a fixed bounded domain. General representations of the total mass, momentum, and energy in the domain, as well as their fluxes through the boundary, in terms of an appropriate Green function are derived from that relation. Several application examples are presented. Similarities to the fluctuation–dissipation theorem in the linear response theory and its generalization to gas systems of arbitrary Knudsen numbers are also discussed. The present paper is an extension of the previous work of the author (Takata in J. Stat. Phys. 136: 751–784, 2009) to time-dependent problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennard, E.H.: Kinetic Theory of Gases. McGraw-Hill, New York (1938)

    Google Scholar 

  2. Sone, Y.: Thermal creep in rarefied gas. J. Phys. Soc. Jpn. 21, 1836–1837 (1966)

    Google Scholar 

  3. Epstein, P.S.: Zur Theorie des Radiometer. Z. Phys. 54, 537–563 (1929)

    Article  ADS  Google Scholar 

  4. Sone, Y.: Flow induced by thermal stress in rarefied gas. Phys. Fluids 15, 1418–1423 (1972)

    Article  ADS  Google Scholar 

  5. Bakanov, S.P., Vysotskij, V.V., Deryaguin, B.V., Roldughin, V.I.: Thermal polarization of bodies in the rarefied flow. J. Non-Equilib. Thermodyn. 8, 75–83 (1983)

    Article  ADS  Google Scholar 

  6. Loyalka, S.K.: Kinetic theory of thermal transpiration and mechanocaloric effect. I. J. Chem. Phys. 55, 4497–4503 (1971)

    Article  ADS  Google Scholar 

  7. Roldughin, V.I.: On the theory of thermal polarization of bodies in a rarefied gas flow. J. Non-Equilib. Thermodyn. 19, 349–367 (1994)

    Article  MATH  ADS  Google Scholar 

  8. Takata, S.: Note on the relation between thermophoresis and slow uniform flow problems for a rarefied gas. Phys. Fluids 21, 112001 (2009)

    Article  ADS  Google Scholar 

  9. Takata, S.: Symmetry of the linearized Boltzmann equation and its application. J. Stat. Phys. 136, 751–784 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Takata, S.: Symmetry of the linearized Boltzmann equation II. Entropy production and Onsager–Casimir relation. J. Stat. Phys. 136, 945–983 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. McCourt, F.R.W., Beenakker, J.J.M., Köhler, W.E., Kuščer, I.: Nonequilibrium Phenomena in Polyatomic Gases, vol. 2. Clarendon, Oxford (1991)

    Google Scholar 

  12. Sharipov, F.: Onsager–Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction. I. General theory for single gas. Physica A 203, 437–456 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  13. Zhdanov, V.M., Roldughin, V.I.: Non-equilibrium thermodynamics and kinetic theory of rarefied gases. Phys. Usp. 41, 349–378 (1998)

    Article  ADS  Google Scholar 

  14. Roldughin, V.I., Zhdanov, V.M.: Non-equilibrium thermodynamics and kinetic theory of gas mixtures in the presence of interfaces. Adv. Colloid Interface. Sci. 98, 121–215 (2002)

    Article  Google Scholar 

  15. Sharipov, F.: Onsager–Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction: Single gas. Phys. Rev. E 73, 026110 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  16. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II, Nonequilibrium Statistical Mechanics, 2nd edn. Springer, Berlin (1991), Chap. 4

    MATH  Google Scholar 

  17. Pottier, N.: Nonequilibrium Statistical Physics. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  18. Sugimoto, H., Sone, Y.: Vacuum pump without a moving part driven by thermal edge flow. In: Capitelli, M., (ed.) Rarefied Gas Dynamics, pp. 168–173. AIP, Melville (2005)

    Google Scholar 

  19. Abe, T.: A verification of the Monte Carlo direct simulation by using the fluctuation dissipation theorem. In: Oguchi, H., (ed.) Rarefied Gas Dynamics, pp. 191–198. University of Tokyo Press, Tokyo (1984)

    Google Scholar 

  20. Alexander, F.J., Garcia, A.L., Alder, B.J.: Cell size dependence of transport coefficients in stochastic particle algorithms. Phys. Fluids 10, 1540–1542 (1998)

    Article  ADS  Google Scholar 

  21. Hadjiconstantinou, N.G.: Analysis of discretization in the direct simulation Monte Carlo. Phys. Fluids 12, 2634–2638 (2000)

    Article  ADS  Google Scholar 

  22. Sone, Y.: Molecular Gas Dynamics. Birkhäuser, Boston (2007); Supplementary Notes and Errata: Kyoto University Research Information Repository (http://hdl.handle.net/2433/66098)

    Book  MATH  Google Scholar 

  23. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    MATH  Google Scholar 

  24. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Takata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takata, S. Symmetry of the Unsteady Linearized Boltzmann Equation in a Fixed Bounded Domain. J Stat Phys 140, 985–1005 (2010). https://doi.org/10.1007/s10955-010-0009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0009-6

Keywords

Navigation