Skip to main content
Log in

Congestion in a Macroscopic Model of Self-driven Particles Modeling Gregariousness

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyze a macroscopic model with a maximal density constraint which describes short range repulsion in biological systems. This system aims at modeling finite-size particles which cannot overlap and repel each other when they are too close. The parts of the fluid where the maximal density is reached behave like incompressible fluids while lower density regions are compressible. This paper investigates the transition between the compressible and incompressible regions. To capture this transition, we study a one-dimensional Riemann problem and introduce a perturbation problem which regularizes the compressible-incompressible transition. Specific difficulties related to the non-conservativity of the problem are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki, I.: A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fisher. (Jpn.) 48, 1081–1088 (1982)

    Google Scholar 

  2. Armbruster, D., Degond, P., Ringhofer, C.: Continuum models for interacting machines. In: Armbruster, D., Kaneko, K., Mikhailov, A. (eds.) Networks of Interacting Machines: Production Organization in Complex Industrial Systems and Biological Cells, pp. 1–32. World Scientific, Singapore (2005)

    Google Scholar 

  3. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Nat. Acad. Sci. USA 105, 1232 (2008)

    Article  ADS  Google Scholar 

  4. Barrat, A., Trizac, E., Ernst, M.H.: Granular gases: dynamics and collective effects. J. Phys. Condens. Matter 17, S2429 (2005)

    Article  ADS  Google Scholar 

  5. Bellomo, N., Dogbe, C.: On the modelling crowd dynamics from scaling to hyperbolic macroscopic models. Math. Models Methods Appl. Sci. 18, 1317–1345 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berthelin, F., Degond, P., Delitala, M., Rascle, M.: A model for the formation and the evolution of traffic jams. Arch. Ration. Mech. Anal. 187, 185–220 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berthelin, F., Degond, P., Le Blanc, V., Moutari, S., Rascle, M., Royer, J.: A traffic-flow model with constraints for the modeling of traffic jams. Math. Models Methods Appl. Sci. 18, 1269–1298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bertin, E., Droz, M., Grégoire, G.: Boltzmann and hydrodynamic description for self-propelled particles. Phys. Rev. E 74, 022101 (2006)

    Article  ADS  Google Scholar 

  9. Bouchut, F.: On zero pressure gas dynamics, advances in kinetic theory and computing: selected papers. Ser. Adv. Math. Appl. Sci. 22, 171–190 (1994)

    MathSciNet  Google Scholar 

  10. Bouchut, F., Brenier, Y., Cortes, J., Ripoll, J.-F.: A hierarchy of models for two-phase flows. J. Nonlinear Sci. 10, 639–660 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Carrillo, J.A., D’Orsogna, M.R., Panferov, V.: Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2, 363–378 (2009)

    Article  MathSciNet  Google Scholar 

  12. Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker-Smale model. Preprint

  13. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)

    MATH  Google Scholar 

  14. Chuang, Y., D’Orsogna, M.R., Marthaler, D., Bertozzi, A.L., Chayes, L.S.: State transitions and the continuum limit for a 2D interacting self-propelled particle system. Physica D 232, 33–47 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32, 1–75 (2003)

    Article  Google Scholar 

  16. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theoret. Biol. 218, 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  17. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Automat. Control 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  18. Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math. 2, 197–227 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96, 104302 (2006)

    Article  ADS  Google Scholar 

  20. Degond, P.: Macroscopic limits of the Boltzmann equation: a review. In: Degond, P., Pareschi, L., Russo, G. (eds.) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology Series, pp. 3–57. Birkhäuser, Basel (2003)

    Google Scholar 

  21. Degond, P., Delitala, M.: Modelling and simulation of vehicular traffic jam formation. Kinet. Relat. Models 1, 279–293 (2008)

    MATH  MathSciNet  Google Scholar 

  22. Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18, 1193–1215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Degond, P., Motsch, S.: Large scale dynamics of the Persistent Turning Angle model for fish behaviour. J. Stat. Phys. 131, 989–1021 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Gautrais, J., Jost, C., Soria, M., Campo, A., Motsch, S., Fournier, R., Blanco, S., Theraulaz, G.: Analyzing fish movement as a persistent turning walker. J. Math. Biol. 58, 429–445 (2008)

    Article  MathSciNet  Google Scholar 

  25. Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)

    Article  ADS  Google Scholar 

  26. Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1, 415–435 (2008)

    MATH  MathSciNet  Google Scholar 

  27. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  ADS  Google Scholar 

  28. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Math. Comput. Simul. Phys. Rev. E 51, 4282–4286 (1995)

    ADS  Google Scholar 

  29. Maury, B., Venel, J.: Handling of contacts in crowd motion simulations. In: Trafic and Granular Flow ’07, pp. 171–180. Springer, Berlin (2009)

    Google Scholar 

  30. Maury, B., Venel, J.: A mathematical framework for a crowd motion model. C. R. Acad. Sci. Paris, Ser. I 346, 1245–1250 (2008)

    MATH  MathSciNet  Google Scholar 

  31. Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Moussaïd, M., Garnier, S., Theraulaz, G., Helbing, D.: Collective information processing and pattern formation in swarms, flocks and crowds. Top. Cogn. Sci. 1, 469–497 (2009)

    Article  Google Scholar 

  34. Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc., Ser. B 276, 2755–2762 (2009)

    Article  Google Scholar 

  35. Peruani, F., Deutsch, A., Bär, M.: Nonequilibrium clustering of self-propelled rods. Phys. Rev. E 74, 30904 (2006)

    Article  ADS  Google Scholar 

  36. Pillot, M.H.: Etude et modélisation des déplacements collectifs spontanés chez le mouton mérinos d’Arles (ovis aries). Master thesis (2006)

  37. Pillot, M.H., Gautrais, J., Gouello, J., Michelena, P., Sibbald, A., Bon, R.: Moving together, incidental leaders and naïve followers. Behav. Process. (in press)

  38. Poschel, T., Herrmann, H.J.: Size segregation and convection. Europhys. Lett. 29, 123–128 (1995)

    Article  ADS  Google Scholar 

  39. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. Comput. Graph. 21, 25–34 (1987)

    Article  Google Scholar 

  40. Serre, D.: Systems of Conservation Laws I. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  41. Slepcev, D.: Coarsening in nonlocal interfacial systems. SIAM J. Math. Anal. 40, 1029–1048 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    MATH  Google Scholar 

  43. Topaz, C.M., Bertozzi, A.L., Lewis, M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68, 1601–1623 (2006)

    Article  MathSciNet  Google Scholar 

  44. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Degond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degond, P., Navoret, L., Bon, R. et al. Congestion in a Macroscopic Model of Self-driven Particles Modeling Gregariousness. J Stat Phys 138, 85–125 (2010). https://doi.org/10.1007/s10955-009-9879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9879-x

Navigation