Skip to main content
Log in

Symmetry of the Linearized Boltzmann Equation and Its Application

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A symmetric relation of macroscopic quantities between two different steady problems of the linearized Boltzmann equation is derived. A few applications to half-space problems are presented first. Then, for the gas in bounded or unbounded domains such that solid bodies or condensed phases are confined in a finite region, general representations of the mass, momentum, and heat fluxes through the boundary (possibly at a point on or on a part of it) are derived from the symmetric relation linked to the separability of boundary data. This result implies a reduction of the original problem to a single elemental problem in the same domain, as far as the fluxes are concerned. Many applications are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennard, E.H.: Kinetic Theory of Gases. McGraw-Hill, New York (1938)

    Google Scholar 

  2. Loyalka, S.K.: Kinetic theory of thermal transpiration and mechanocaloric effect I. J. Chem. Phys. 55, 4497–4503 (1971)

    Article  ADS  Google Scholar 

  3. Bakanov, S.P., Vysotskij, V.V., Deryaguin, B.V., Roldughin, V.I.: Thermal polarization of bodies in the rarefied flow. J. Nonequilib. Thermodyn. 8, 75–83 (1983)

    Article  Google Scholar 

  4. Takata, S., Sone, Y., Aoki, K.: Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5, 716–737 (1993)

    Article  MATH  ADS  Google Scholar 

  5. Epstein, P.S.: Zur Theorie des Radiometer. Z. Phys. 54, 537–563 (1929)

    Article  ADS  Google Scholar 

  6. Sone, Y.: Flow induced by thermal stress in rarefied gas. Phys. Fluids 15, 1418–1423 (1972)

    Article  ADS  Google Scholar 

  7. Takata, S., Aoki, K., Sone, Y.: Thermophoresis of a sphere with a uniform temperature: numerical analysis of the Boltzmann equation for hard-sphere molecules. In: Shizgal, B.D., Weaver, D.P. (eds.) Rarefied Gas Dynamics, pp. 626–639. AIAA, Washington (1994)

    Google Scholar 

  8. Sharipov, F.: Onsager–Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction II. Application of the theory for single gas. Physica A 203, 457–485 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhdanov, V.M., Roldughin, V.I.: Non-equilibrium thermodynamics and kinetic theory of rarefied gases. Phys. Uspekhi 41, 349–378 (1998)

    Article  ADS  Google Scholar 

  10. Sone, Y.: Molecular Gas Dynamics. Birkhäuser, Boston (2007). Supplementary Notes and Errata: Kyoto University Research Information Repository (http://hdl.handle.net/2433/66098)

    Book  MATH  Google Scholar 

  11. Sone, Y.: Asymptotic theory of flow of rarefied gas over a smooth boundary I. In: Trilling, L., Wachman, H.Y. (eds.) Rarefied Gas Dynamics. vol. 1, pp. 243–253. Academic Press, New York (1969)

    Google Scholar 

  12. Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston (2002). Supplementary Notes and Errata: Kyoto University Research Information Repository (http://hdl.handle.net/2433/66099)

    MATH  Google Scholar 

  13. Cercignani, C., The Boltzmann Equation and Its Application, Sect. III.3. Springer, New York (1988)

    Google Scholar 

  14. Liu, T.-P., Yu, S.-H.: The Green’s function and large-time behavior of solutions for the one-dimensional Boltzmann equation. Commun. Pure Appl. Math. 57, 1543–1608 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sunakawa, S.: Theoretical Electromagnetism. Kinokuniya, Tokyo (1999) (in Japanese)

    Google Scholar 

  16. Jeans, J.: The Mathematical Theory of Electricity and Magnetism, 5th edn. reprinted. Cambridge University Press, New York (1960)

    Google Scholar 

  17. Panofsky, W.K.H., Phillips, M.: Classical Electricity and Magnetism, 2nd edn. reprinted. Addison-Wesley, Tokyo (1962)

    MATH  Google Scholar 

  18. Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960)

    Google Scholar 

  19. Sharipov, F.: Onsager–Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction I. General theory for single gas. Physica A 203, 437–456 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  20. Sharipov, F.: Onsager–Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction: single gas. Phys. Rev. E 73, 026110 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. McCourt, F.R.W., Beenakker, J.J.M., Köhler, W.E., Kuščer, I.: Nonequilibrium Phenomena in Polyatomic Gases, vol. 2, Chap. 16. Clarendon Press, Oxford (1991)

    Google Scholar 

  22. Grad, H.: Singular and nonuniform limits of solutions of the Boltzmann equation. In: Bellman, R., Birkhoff, G., Abu-Shumays, I. (eds.) Transport Theory, pp. 269–308. AMS, Providence (1969)

    Google Scholar 

  23. Imai, I.: Some applications of function theory to fluid dynamics. In: 2nd International JSME Symposium on Fluid Machinery and Fluidics, Tokyo, pp. 15–23 (1972)

  24. Tatsumi, T.: Fluid Mechanics. Baifukan, Tokyo (1982) (in Japanese)

    Google Scholar 

  25. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics, 2nd edn. Noordhoff International, Leyden (1973)

    Google Scholar 

  26. Sobolev, S.L.: Partial Differential Equations of Mathematical Physics. Dover, New York (1989)

    Google Scholar 

  27. Sone, Y.: Thermal creep in rarefied gas. J. Phys. Soc. Jpn. 21, 1836–1837 (1966)

    Article  ADS  Google Scholar 

  28. Ohwada, T., Sone, Y., Aoki, K.: Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1, 1588–1599 (1989)

    Article  MATH  ADS  Google Scholar 

  29. Siewert, C.E.: Viscous-slip, thermal-slip, and temperature jump coefficients as defined by the linearized Boltzmann equation and the Cercignani–Lampis boundary condition. Phys. Fluids 15, 1696–1701 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. Maslova, N.B.: Kramers problem in the kinetic theory of gases. USSR Comput. Math. Phys. 22, 208–219 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Bardos, C., Caflisch, R.E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Commun. Pure Appl. Math. 39, 323–352 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Coron, F., Golse, F., Sulem, C.: A classification of well-posed kinetic layer problems. Commun. Pure Appl. Math. 41, 409–435 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Golse, F., Poupaud, F.: Stationary solutions of the linearized Boltzmann equation in a half-space. Math. Methods Appl. Sci. 11, 483–502 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Sone, Y., Onishi, Y.: Kinetic theory of evaporation and condensation—hydrodynamic equation and slip boundary condition. J. Phys. Soc. Jpn. 44, 1981–1994 (1978)

    Article  Google Scholar 

  35. Yasuda, S., Takata, S., Aoki, K.: Numerical analysis of the shear flow of a binary mixture of hard-sphere gases over a plane wall. Phys. Fluids 16, 1989–2003 (2004)

    Article  Google Scholar 

  36. Pao, Y.P.: Application of kinetic theory to the problem of evaporation and condensation. Phys. Fluids 14, 306–312 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  37. Sone, Y., Ohwada, T., Aoki, K.: Evaporation and condensation on a plane condensed phase: numerical analysis of the linearized Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1, 1398–1405 (1989)

    Article  MATH  ADS  Google Scholar 

  38. Bedeaux, D., Hermans, L.J.F., Ytrehus, T.: Slow evaporation and condensation. Physica A 169, 263–280 (1990)

    Article  ADS  Google Scholar 

  39. Sone, Y., Ohwada, T., Aoki, K.: Temperature jump and Knudsen layer in a rarefied gas over a plane wall: numerical analysis of the linearized Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1, 363–370 (1989)

    Article  MATH  ADS  Google Scholar 

  40. Yasuda, S., Takata, S., Aoki, K.: Evaporation and condensation of a binary mixture of vapors on a plane condensed phase: numerical analysis of the linearized Boltzmann equation. Phys. Fluids 17, 047105 (2005)

    Article  ADS  Google Scholar 

  41. Takata, S., Yasuda, S., Aoki, K., Kosuge, S.: Temperature, pressure, and concentration jumps for a binary mixture of vapors on a plane condensed phase: numerical analysis of the linearized Boltzmann equation. Phys. Fluids 18, 067102 (2006)

    Article  ADS  Google Scholar 

  42. Chernyak, V.G., Margilevskiy, A.Ye.: The kinetic theory of heat and mass transfer from a spherical particle in a rarefied gas. Int. J. Heat Mass Transfer 32, 2127–2134 (1989)

    Article  MATH  Google Scholar 

  43. Takata, S., Sone, Y., Lhuillier, D., Wakabayashi, M.: Evaporation from or condensation onto a sphere: numerical analysis of the Boltzmann equation for hard-sphere molecules. Comput. Math. Appl. 35, 193–214 (1998)

    Article  MATH  Google Scholar 

  44. Takata, S., Sone, Y.: Flow induced around a sphere with a non-uniform surface temperature in a rarefied gas, with application to the drag and thermal force problems of a spherical particle with an arbitrary thermal conductivity. Eur. J. Mech. B Fluids 14, 487–518 (1995)

    MATH  Google Scholar 

  45. Ohwada, T., Sone, Y., Aoki, K.: Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1, 2042–2049 (1989)

    Article  MATH  ADS  Google Scholar 

  46. Sone, Y., Takata, S., Ohwada, T.: Numerical analysis of the plane Couette flow of a rarefied gas on the basis of the linearized Boltzmann equation for hard-sphere molecules. Eur. J. Mech. B Fluids 9, 273–288 (1990)

    MATH  ADS  Google Scholar 

  47. Garcia, R.D.M., Siewert, C.E.: The linearized Boltzmann equation with Cercignani-Lampis boundary conditions: basic flow problems in a plane channel. Eur. J. Mech. B Fluids 28, 387–396 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Sone, Y., Waniguchi, Y., Aoki, K.: One-way flow of a rarefied gas induced in a channel with a periodic temperature distribution. Phys. Fluids 8, 2227–2235 (1996)

    Article  MATH  ADS  Google Scholar 

  49. Knudsen, M.: Thermischer Molekulardruck der Gase in Röhren. Ann. Phys. (Leipzig) 33, 1435–1448 (1910)

    ADS  Google Scholar 

  50. Sugimoto, H., Sone, Y.: Vacuum pump without a moving part driven by thermal edge flow. In: Capitelli, M. (ed.) Rarefied Gas Dynamics, pp. 168–173. AIP, Melville (2005)

    Google Scholar 

  51. Bedeaux, D.: Nonequilibrium thermodynamics and statistical physics of surfaces. In: Prigogine, I., Rice, S.A. (eds.) Advances in Chemical Physics, vol. LXIV, pp. 47–109. Wiley, New York (1986)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Takata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takata, S. Symmetry of the Linearized Boltzmann Equation and Its Application. J Stat Phys 136, 751–784 (2009). https://doi.org/10.1007/s10955-009-9793-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9793-2

Keywords

Navigation