Skip to main content
Log in

On Using Random Walks to Solve the Space-Fractional Advection-Dispersion Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The solution of space-fractional advection-dispersion equations (fADE) by random walks depends on the analogy between the fADE and the forward equation for the associated Markov process. The forward equation, which provides a Lagrangian description of particles moving under specific Markov processes, is derived here by the adjoint method. The fADE, however, provides an Eulerian description of solute fluxes. There are two forms of the fADE, based on fractional-flux (FF-ADE) and fractional divergence (FD-ADE). The FF-ADE is derived by taking the integer-order mass conservation of non-local diffusive flux, while the FD-ADE is derived by taking the fractional-order mass conservation of local diffusive flux. The analogy between the fADE and the forward equation depends on which form of the fADE is used and on the spatial variability of the dispersion coefficient D in the fADE. If D does not vary in space, then the fADEs can be solved by tracking particles following a Markov process with a simple drift and an α-stable Lévy noise with index α that corresponds to the fractional order of the fADE. If D varies smoothly in space and the solute concentration at the upstream boundary remains zero, the FD-ADE can be solved by simulating a Markov process with a simple drift, an α-stable Lévy noise and an additional term with the dispersion gradient and an additional Lévy noise of order α−1. However, a non-Markov process might be needed to solve the FF-ADE with a space-dependent D, except for specific D such as a linear function of space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Baeumer and M. M. Meerschaert, Frac. Calc. Appl. Anal 4:481 (2001).

    MATH  MathSciNet  Google Scholar 

  2. D. A. Benson, Ph.D. dissertation, University of Nevada at Reno, 1998 (unpublished).

  3. D. A. Benson, R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft, Transp. Por. Media 42:211 (2001).

    Article  MathSciNet  Google Scholar 

  4. D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Water Resour. Res. 36(6):1403 (2000).

    Article  ADS  Google Scholar 

  5. A. V. Chechkin, R. Gorenflo and I. M. Sokolov, J. Phys. A 38:L679 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. A. V. Chechkin, V. Y. Gonchar, J. Klafter, R. Metzler, and L. V. Tanatarov, J. Sta. Phys. 115:1505 (2004).

    Article  Google Scholar 

  7. S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, p. 380, John Wiley & Sons, New York, 1986.

    MATH  Google Scholar 

  8. W. Feller, An introduction to Probability Theory and Its Applications, second edition, John Wiley & Sons, New York, 1971.

    MATH  Google Scholar 

  9. R. Gorenflo and F. Mainardi, J. Anal. Appl. 18(2):231 (1999).

    MATH  MathSciNet  Google Scholar 

  10. R. Gorenflo, A. Vivoli, and F. Mainardi, Nonlinear Dynamics 38:101 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Nonlinear Dynamics 29:129 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Gorenflo, G. D. Fabritiis, and F. Mainardi, Phys. A 269:79 (2004).

    Google Scholar 

  13. A. E. Hassan and M. M. Mohamed, J. Hyd. 275:242 (2002).

    Article  ADS  Google Scholar 

  14. A. Janicki and A. Weron, Simulation and Chaotic Behavior of a-stable Stochastic Processes, p. 355, Marcel Dekker, Inc., New York, 1994.

    Google Scholar 

  15. W. Kinzelbach, In: E. Custodio (Ed.), Groundwater Flow and Quality Modeling, pp. 227–245, Reidel Publishing Company, 1988.

  16. K. A. Klise, V. C. Tidwell, S. A. McKenna, and M. D. Chapin, Geol. Soc. Am. Abstr. Programs 36(5):573 (2004).

    Google Scholar 

  17. E. M. LaBolle, G. E. Fogg, and A. F. B. Tompson, Water Resour. Res. 32:583 (1996).

    Article  ADS  Google Scholar 

  18. E. M. LaBolle, J. Quastel, G. E. Fogg, and J. Gravner, Water Resour. Res. 36(3):651 (2000).

    Article  ADS  Google Scholar 

  19. F. Liu, V. Anh, and I. Turner, J. Comput. Appl. Math. 166:209 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. M. M. Meerschaert and C. Tadjeran, Appl. Nume. Math. 56:80 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  21. M. M. Meerschaert and C. Tadjeran, J. of Comp. and Appl. Math. 172:65 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. M. M. Meerschaert and H. P. Scheffler, Frac. Cal. Appl. Analy. 5(1):27 (2002).

    Google Scholar 

  23. M. M. Meerschaert and H. P. Scheffler, Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice, pp. 45–46, John Wiley & Sons, New York, 2001.

    MATH  Google Scholar 

  24. M. M. Meerschaert, D. A. Benson, and B. Baeumer, Phys. Rev. E 59(5):5026 (1999).

    Article  ADS  Google Scholar 

  25. M. M. Meerschaert, D. A. Benson, and B. Baeumer, Phys. Rev. E 63(2):12 (2001).

    Article  Google Scholar 

  26. M. M. Meerschaert, J. Mortensen, and S. W. Wheatcraft, Phys. A., to appear (2006).

  27. R. Metzler and J. Klafter, J. Phys. A. 161:16 (2004).

    MathSciNet  Google Scholar 

  28. R. Metzler, E. Barkai, and J. Klafter, Europhys. Lett. 46(4):431 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  29. K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993.

    MATH  Google Scholar 

  30. T. J. Osler, The Americ. Math. Mon. 78(6):645 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Risken, The Fokker-Planck Equation, p. 454, Springer & Verlag, New York, 1984.

    MATH  Google Scholar 

  32. J. P. Roop, Ph.D. dissertation, Clemson University, 2004 (unpublished).

  33. G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994.

    MATH  Google Scholar 

  34. H. Scher and M. Lax, Phys. Rev. B 7(10):4491 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Schumer, D. A. Benson, M. M. Meerschaert, and S. W. Wheatcraft, J. Contam. Hyd. 48:69 (2001).

    Article  Google Scholar 

  36. I. M. Sokolov and R. Metzler, J. Phys. A 37: L609 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. D. Stroock, Wahrscheinlichkeitstheorie verw. Gebiete 32:209 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  38. G. J. M. Uffink, In: H. E. Kobus and W. Kinzelbach (Eds.), Contaminant Transport in Groundwater, p. 283, Brookfield: A.A. Balkema, Vt., 1989.

  39. G. S. Weissmann, Y. Zhang, E. M. LaBolle, and G. E. Fogg, Water Resour. Res. 38(10), doi: 10.1029/2001WR000907.

  40. V. V. Yanovsky, A. V. Chechkin, D. Schertzer, and A. V. Tur, Phys. A 282:13 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Yong.

Additional information

PACS: 02.50.Ga, 02.60.Nm, 02.60.Cb, 05.40.Fb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong, Z., Benson, D.A., Meerschaert, M.M. et al. On Using Random Walks to Solve the Space-Fractional Advection-Dispersion Equations. J Stat Phys 123, 89–110 (2006). https://doi.org/10.1007/s10955-006-9042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9042-x

Key words

Navigation