Skip to main content

Advertisement

Log in

Transport Properties of Various Ionic Liquids During Electrodialysis

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We have measured changes in ionic liquid (IL) concentrations as functions of time for seven different imidazolium based ILs undergoing electrodialysis (ED). We also measured IL concentrations in the corresponding aqueous solutions, and subsequently estimated IL diffusion coefficients in each medium. All ILs were successfully transported from the aqueous solutions in the ED process; nevertheless, their transport behavior in the membranes differed significantly. Diffusion coefficients in the membranes were several hundred times smaller than those in aqueous solution; moreover, diffusion coefficients in the membranes showed stronger ion size dependence than that predicted by the Stokes–Einstein equation. This dependence was more prominent when the cation size was increased compared to that when the anion size was increased. This behavior can be attributed to the geometry of pores in the membranes. The average pore size in the membranes was estimated to be ~4 Å, which is comparable to the size of IL ions (2–4 Å) used here and therefore slows down the ion migration of ILs, particularly the ions with larger ion size. Moreover, it is suggested that the cation exchange membranes have longer permeation paths for ions than the anion exchange membranes, which explains the slower diffusivity of the cation in the ED process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjöholm, R., Mikkola, J.P.: Dissolution of lignocellulosic materials and its constituents using ionic liquids—A review. Ind. Crops Prod. 32, 175–201 (2010)

    Article  Google Scholar 

  2. Hossain, M.M., Aldous, L.: Ionic liquids for lignin processing: dissolution, isolation, and conversion. Aust. J. Chem. 65, 1465–1477 (2012)

    Article  CAS  Google Scholar 

  3. Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G.H., Gholami, M., Ardjmand, M.: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sust. Energy. Rev. 27, 77–93 (2013)

    Article  CAS  Google Scholar 

  4. Amarasekara, A.S., Owereh, O.S.: Hydrolysis and decomposition of cellulose in Brönsted acidic ionic liquids under mild conditions. Ind. Eng. Chem. Res. 48, 10152–10155 (2009)

    Article  CAS  Google Scholar 

  5. Bai, L., Wang, X., Nie, Y., Dong, H., Zhang, X., Zhang, S.: Study on the recovery of ionic liquids from dilute effluent by electrodialysis method and the fouling of cation-exchange membrane. Sci. China Chem. 56, 1811–1816 (2013)

    Article  CAS  Google Scholar 

  6. Wang, X., Nie, Y., Zhang, X., Zhang, S., Li, J.: Recovery of ionic liquids from dilute aqueous solutions by electrodialysis. Desalination 285, 205–212 (2012)

    Article  CAS  Google Scholar 

  7. Li, H., Meng, H., Li, C., Li, L.: Competitive transport of ionic liquids and impurity ions during the electrodialysis process. Desalination 245, 349–356 (2009)

    Article  CAS  Google Scholar 

  8. Abels, C., Thimm, K., Wulfhorst, H., Spiess, A.C., Wessling, M.: Membrane-based recovery of glucose from enzymatic hydrolysis of ionic liquid pretreated cellulose. Bioresour. Technol. 149, 58–64 (2013)

    Article  CAS  Google Scholar 

  9. Trinh, L.T.P., Lee, Y.J., Lee, J.-W., Bae, H.-J., Lee, H.-J.: Recovery of an ionic liquid [BMIM]Cl from a hydrolysate of lignocellulosic biomass using electrodialysis. Sep. Purif. Technol. 120, 86–91 (2013)

    Article  CAS  Google Scholar 

  10. Meng, H., Xiao, L., Li, L., Li, C.: Concentration of ionic liquids from aqueous ionic liquids solution using electrodialyzer. Desalin. Water Treat. 34, 326–329 (2011)

    Article  CAS  Google Scholar 

  11. Mier, M.P., Ibañez, R., Ortiz, I.: Influence of ion concentration on the kinetics of electrodialysis with bipolar membranes. Sep. Purif. Technol. 59, 197–205 (2008)

    Article  CAS  Google Scholar 

  12. Wesselingh, J.A., Vonk, P., Kraaijeveld, G.: Exploring the Maxwell–Stefan description of ion exchange. Chem. Eng. J. 57, 75–89 (1995)

    CAS  Google Scholar 

  13. Firdaous, L., Schlumpf, T.S., Mal´eriat, J.-P., Bourseau, P., Jaouen, P.: A mathematical model of multicomponent mass transfer in electrodialysis. Paper presented at the Scandinavian Conference on Simulation and Modeling, Trondheim, Norway, 13–14 October 2005

  14. Le, X.T., Bui, T.H., Viel, P., Berthelot, T., Palacin, S.: On the structure–properties relationship of the AMV anion exchange membrane. J. Membr. Sci. 340, 133–140 (2009)

    Article  CAS  Google Scholar 

  15. Himmler, S., König, A., Wasserscheid, P.: Synthesis of [EMIM]OH via bipolar membrane electrodialysis—Precursor production for the combinatorial synthesis of [EMIM]-based ionic liquids. Green Chem. 9, 935–942 (2007)

    Article  CAS  Google Scholar 

  16. Meng, H., Li, H., Li, C., Li, L.: Synthesis of ionic liquid using a four-compartment configuration electrodialyzer. J. Membr. Sci. 318, 1–4 (2008)

    Article  CAS  Google Scholar 

  17. Haerens, K., De Vreese, P., Matthijs, E., Pinoy, L., Binnemans, K., Van Der Bruggen, B.: Production of ionic liquids by electrodialysis. Sep. Purif. Technol. 97, 90–95 (2012)

    Article  CAS  Google Scholar 

  18. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09. In. Gaussian Inc, Wallingford CT (2010)

    Google Scholar 

  19. Becke, A.D.: Density–functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  20. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  21. Miehlich, B., Savin, A., Stoll, H., Preuss, H.: Results obtained with the correlation energy density functionals of Becke and Lee. Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989)

    Article  CAS  Google Scholar 

  22. Parsons, D.F., Ninham, B.W.: Ab initio molar volumes and Gaussian radii. J. Phys. Chem. A 113, 1141–1150 (2009)

    Article  CAS  Google Scholar 

  23. Itoh, H., Yoshizumi, T., Saeki, M.: Sieving effect in electrodialysis with an ion exchange membrane. J. Membr. Sci. 27, 155–163 (1986)

    Article  CAS  Google Scholar 

  24. Choi, J.-H., Moon, S.-H.: Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions. J. Membr. Sci. 191, 225–236 (2001)

    Article  CAS  Google Scholar 

  25. Gregor, H.P.: Ion-exchange membranes. Correlation between structure and function. Pure Appl. Chem. 16, 329–349 (1968)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by an Advanced Low Carbon Technology Research and Development Program (ALCA) (Grant number 2100040) and the Center of Innovation Program from Japan Science and Technology Agency, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Takahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, T., Osawa, K., Tatsumi, M. et al. Transport Properties of Various Ionic Liquids During Electrodialysis. J Solution Chem 44, 2405–2415 (2015). https://doi.org/10.1007/s10953-015-0409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0409-y

Keywords

Navigation