Skip to main content
Log in

Thermophysical Properties of Two Ammonium-Based Protic Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Experimental data for density, viscosity, refractive index and surface tension are reported, for the first time, in the temperature range between 288.15 and 353.15 K and at atmospheric pressure for two protic ionic liquids, namely 2-(dimethylamino)-N,N-dimethylethan-1-ammonium acetate, [N11{2(N11)}H][CH3CO2], and N-ethyl-N,N-dimethylammonium phenylacetate, [N112H][C7H7CO2]. The effect of the anion’s aromaticity and the cation’s aliphatic tails on the studied properties is discussed. Additional derived properties, such as isobaric thermal expansion coefficient, surface entropy and enthalpy and critical temperature, were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  2. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  3. Wasserscheid, P., Keim, W.: Ionic liquids-new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. Engl. 39, 3772–3789 (2000)

    Article  CAS  Google Scholar 

  4. Hagiwara, R., Lee, J.: Ionic liquids for electrochemical devices. Electrochemistry 75, 23–34 (2007)

    Article  CAS  Google Scholar 

  5. Xiang, H.F., Yin, B., Wang, H., Lin, H.W., Ge, X.W., Xie, S., Chen, C.H.: Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries. Electrochim. Acta 55, 5204–5209 (2010)

    Article  CAS  Google Scholar 

  6. Chowdhury, S., Mohan, R.S., Scott, J.L.: Reactivity of ionic liquids. Tetrahedron 63, 2363–2389 (2007)

    Article  CAS  Google Scholar 

  7. Sheldon, R.A., Lau, R.M., Sorgedrager, M.J., van Rantwijk, F., Seddon, K.R.: Biocatalysis in ionic liquids. Green Chem. 4, 147–151 (2002)

    Article  CAS  Google Scholar 

  8. Van Rantwijk, F., Sheldon, R.A.: Biocatalysis in ionic liquids. Chem. Rev. 107, 2757–2785 (2007)

    Article  Google Scholar 

  9. De Souza, R.F., Padilha, J.C., Gonçalves, R.S., Dupont, J.: Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochem. Commun. 5, 728–731 (2003)

    Article  Google Scholar 

  10. Wang, Y., Zaghib, K., Guerfi, A., Bazito, F.F.C., Torresi, R.M., Dahn, J.R.: Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochim. Acta 52, 6346–6352 (2007)

    Article  CAS  Google Scholar 

  11. Shvedene, N.V., Chernyshov, D.V., Pletnev, I.V.: Ionic liquids in electrochemical sensors. Russ. J. Gen. Chem. 78, 2507–2520 (2009)

    Article  Google Scholar 

  12. Wang, P., Zakeeruddin, S.M., Moser, J.E., Grätzel, M.: A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. B. 107, 13280–13285 (2003)

    Article  CAS  Google Scholar 

  13. Kennedy, D.F., Drummond, C.J.: Large aggregated ions found in some protic ionic liquids. J. Phys. Chem. B. 113, 5690–5693 (2009)

    Article  CAS  Google Scholar 

  14. Greaves, T.L., Drummond, C.J.: Protic ionic liquids: properties and applications. Chem. Rev. 108, 206–237 (2008)

    Article  CAS  Google Scholar 

  15. Bicak, N.: A new ionic liquid: 2-hydroxy ethylammonium formate. J. Mol. Liq. 116, 15–18 (2005)

    Article  CAS  Google Scholar 

  16. Iglesias, M., Torres, A., Gonzalez-Olmos, R., Salvatierra, D.: Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}. J. Chem. Thermodyn. 40, 119–133 (2008)

    Article  CAS  Google Scholar 

  17. Álvarez, V.H., Dosil, N., Gonzalez-Cabaleiro, R., Mattedi, S., Martin-Pastor, M., Iglesias, M., Navaza, J.M.: Brønsted ionic liquids for sustainable processes: synthesis and physical properties. J. Chem. Eng. Data 55, 625–632 (2010)

    Article  Google Scholar 

  18. Cota, I., Gonzalez-Olmos, R., Iglesias, M., Medina, F.: New short aliphatic chain ionic liquids: synthesis, physical properties, and catalytic activity in aldol condensations. J. Phys. Chem. B. 111, 12468–12477 (2007)

    Article  CAS  Google Scholar 

  19. Peric, B., Sierra, J., Martí, E., Cruañas, R., Garau, M.A., Arning, J., Bottin-Weber, U., Stolte, S.: (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. J. Hazard. Mater. 261, 99–105 (2013)

    Article  CAS  Google Scholar 

  20. Pernak, J., Goc, I., Mirska, I.: Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem. 6, 323–329 (2004)

    Article  CAS  Google Scholar 

  21. Hangarge, R.V., Jarikote, D.V., Shingare, M.S.: Knoevenagel condensation reactions in an ionic liquid. Green Chem. 4, 266–268 (2002)

    Article  CAS  Google Scholar 

  22. Laali, K.K., Gettwert, V.J.: Electrophilic nitration of aromatics in ionic liquid solvents. J. Org. Chem. 66, 35–40 (2001)

    Article  CAS  Google Scholar 

  23. Hu, Y., Chen, J., Le, Z., Zheng, Q.: Organic reactions in ionic liquids: ionic liquids ethylammonium nitrate promoted knoevenagel condensation of aromatic aldehydes with active methylene compounds. Synth. Commun. 35, 739–744 (2005)

    Article  CAS  Google Scholar 

  24. Poole, C.F.: Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J. Chromatogr. A. 1037, 49–82 (2004)

    Article  CAS  Google Scholar 

  25. Susan, M.A.B.H., Noda, A., Mitsushima, S., Watanabe, M.: Brønsted acid-base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commun. 8, 938–939 (2003)

    Article  Google Scholar 

  26. Earle, M., Plechkova, N., Seddon, K.: Green synthesis of biodiesel using ionic liquids. Pure Appl. Chem. 81, 2045–2057 (2009)

    Article  CAS  Google Scholar 

  27. Gálvez-Ruiz, J.C., Holl, G., Karaghiosoff, K., Klapötke, T.M., Löhnwitz, K., Mayer, P., Nöth, H., Polborn, K., Rohbogner, C.J., Suter, M., Weigand, J.J.: Derivatives of 1,5-diamino-1H-tetrazole: a new family of energetic heterocyclic-based salts. Inorg. Chem. 44, 4237–4253 (2005)

    Article  Google Scholar 

  28. Picquet, M., Tkatchenko, I., Tommasi, I., Wasserscheid, P., Zimmermann, J.: Ionic liquids, 3. Synthesis and utilisation of protic imidazolium salts in homogeneous catalysis. Adv. Synth. Catal. 345, 959–962 (2003)

    Article  CAS  Google Scholar 

  29. Talavera-Prieto, N.M.C., Ferreira, A.G.M., Simões, P.N., Carvalho, P.J., Mattedi, S., Coutinho, J.A.P.: Thermophysical characterization of N-methyl-2-hydroxyethylammonium carboxilate ionic liquids. J. Chem. Thermodyn. 68, 221–234 (2014)

    Article  CAS  Google Scholar 

  30. Greaves, T.L., Weerawardena, A., Fong, C., Drummond, C.J.: Many protic ionic liquids mediate hydrocarbon–solvent interactions and promote amphiphile self-assembly. Langmuir 23, 402–404 (2007)

    Article  CAS  Google Scholar 

  31. Belieres, J.-P., Angell, C.A.: Protic ionic liquids: preparation, characterization, and proton free energy level representation. J. Phys. Chem. B. 111, 4926–4937 (2007)

    Article  CAS  Google Scholar 

  32. Kurnia, K.A., Wilfred, C.D., Murugesan, T.: Thermophysical properties of hydroxyl ammonium ionic liquids. J. Chem. Thermodyn. 41, 517–521 (2009)

    Article  CAS  Google Scholar 

  33. Iglesias, M., Gonzalez-Olmos, R., Cota, I., Medina, F.: Brønsted ionic liquids: study of physico-chemical properties and catalytic activity in aldol condensations. Chem. Eng. J. 162, 802–808 (2010)

    Article  CAS  Google Scholar 

  34. Pinkert, A., Ang, K.L., Marsh, K.N., Pang, S.: Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids. Phys. Chem. Chem. Phys. 13, 5136–5143 (2011)

    Article  CAS  Google Scholar 

  35. Chhotaray, P.K., Gardas, R.L.: Thermophysical properties of ammonium and hydroxylammonium protic ionic liquids. J. Chem. Thermodyn. 72, 117–124 (2014)

    Article  CAS  Google Scholar 

  36. Almeida, H.F.D., Passos, H., Lopes-da-Silva, J.A., Fernandes, A.M., Freire, M.G., Coutinho, J.A.P.: Thermophysical properties of five acetate-based ionic liquids. J. Chem. Eng. Data. 57, 3005–3013 (2012)

    Article  CAS  Google Scholar 

  37. Capelo, S.B., Méndez-Morales, T., Carrete, J., López Lago, E., Vila, J., Cabeza, O., Rodríguez, J.R., Turmine, M., Varela, L.M.: Effect of temperature and cationic chain length on the physical properties of ammonium nitrate-based protic ionic liquids. J. Phys. Chem. B. 116, 11302–11312 (2012)

    Article  CAS  Google Scholar 

  38. Chang-Ping, L., Zhuo, L., Ben-Xue, Z., Qing-Shan, L., Xiao-Xia, L.: Density, viscosity and conductivity of protic ionic liquid N,N-dimethylethanolammoniumpropionate. Acta Phys. Chim. Sin. 29, 2157–2161 (2013)

    Google Scholar 

  39. Arfan, A., Bazureau, J.P.: Efficient combination of recyclable task specific ionic liquid and microwave dielectric heating for the synthesis of lipophilic esters. Org. Process Res. Dev. 9, 743–748 (2005)

    Article  CAS  Google Scholar 

  40. Govinda, V., Madhusudhana Reddy, P., Bahadur, I., Attri, P., Venkatesu, P., Venkateswarlu, P.: Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent. Thermochim. Acta 556, 75–88 (2013)

    Article  CAS  Google Scholar 

  41. Kavitha, T., Attri, P., Venkatesu, P., Devi, R.S.R., Hofman, T.: Influence of alkyl chain length and temperature on thermophysical properties of ammonium-based ionic liquids with molecular solvent. J. Phys. Chem. B. 116, 4561–4574 (2012)

    Article  CAS  Google Scholar 

  42. Carvalho, P.J., Regueira, T., Santos, L.M.N.B.F., Fernandez, J., Coutinho, J.A.P.: Effect of water on the viscosities and densities of 1-butyl-3-methylimidazolium dicyanamide and 1-butyl-3-methylimidazolium tricyanomethane at atmospheric pressure. J. Chem. Eng. Data 55, 645–652 (2010)

    Article  CAS  Google Scholar 

  43. Neves, C.M.S.S., Batista, M.L.S., Cláudio, A.F.M., Santos, L.M.N.B.F., Marrucho, I.M., Freire, M.G., Coutinho, J.A.P.: Thermophysical properties and water saturation of [PF6]-based Ionic Liquids. J. Chem. Eng. Data 55, 5065–5073 (2010)

    Article  CAS  Google Scholar 

  44. Neves, C.M.S.S., Kurnia, K.A., Coutinho, J.A.P., Marrucho, I.M., Lopes, J.N.C., Freire, M.G., Rebelo, L.P.N.: Systematic study of the thermophysical properties of imidazolium-based ionic liquids with cyano-functionalized anions. J. Phys. Chem. B. 117, 10271–10283 (2013)

    Article  CAS  Google Scholar 

  45. Bhattacharjee, A., Carvalho, P.J., Coutinho, J.A.P.: The effect of the cation aromaticity upon the thermophysical properties of piperidinium- and pyridinium-based ionic liquids. Fluid Phase Equilib. 375, 80–88 (2014)

    Article  CAS  Google Scholar 

  46. Bhattacharjee, A., Luís, A., Santos, J.H., Lopes-da-Silva, J.A., Freire, M.G., Carvalho, P.J., Coutinho, J.A.P.: Thermophysical properties of sulfonium- and ammonium-based ionic liquids. Fluid Phase Equilib. 381, 36–45 (2014)

    Article  CAS  Google Scholar 

  47. Almeida, H.F.D., Teles, A.R.R., Lopes-da-Silva, J.A., Freire, M.G., Coutinho, J.A.P.: Influence of the anion on the surface tension of 1-ethyl-3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 54, 49–54 (2012)

    Article  CAS  Google Scholar 

  48. Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P.: PρT measurements of imidazolium-based ionic liquids. J. Chem. Eng. Data 52, 1881–1888 (2007)

    Article  CAS  Google Scholar 

  49. Blesic, M., Swadzba-Kwasny, M., Belhocine, T., Gunaratne, H.Q.N., Lopes, J.N.C., Gomes, M.F.C., Padua, A.A.H., Seddon, K.R., Rebelo, L.P.N.: 1-Alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [C n H +12n mim] [C k H +12k SO3]: synthesis and physicochemical properties. Phys. Chem. Chem. Phys. 11, 8939–8948 (2009)

    Article  CAS  Google Scholar 

  50. Machanová, K., Boisset, A., Sedláková, Z., Anouti, M., Bendová, M., Jacquemin, J.: Thermophysical properties of ammonium-based bis{(trifluoromethyl)sulfonyl}imide ionic liquids: volumetric and transport properties. J. Chem. Eng. Data 57, 2227–2235 (2012)

    Article  Google Scholar 

  51. Kilaru, P., Baker, G.A., Scovazzo, P.: Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: data and correlations. J. Chem. Eng. Data 52, 2306–2314 (2007)

    Article  CAS  Google Scholar 

  52. Turbomole, version 6.1; University of Karlsruhe and Forschungszentrum Karlsruhe GmbH: Karlsruhe, Germany. http://www.turbomole.com (2009). (Accessed 23 March 2015)

  53. Eckert, A.K.F.: COSMOtherm Version C2.1 Release 01.08, COSMOlogic GmbH & Co. KG, Leverkusen, Germany (2006)

  54. Gardas, R.L., Coutinho, J.A.P.: Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AIChE J. 55, 1274–1290 (2009)

    Article  CAS  Google Scholar 

  55. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, San Diego (2011)

    Google Scholar 

  56. Goodwin, A.R.H., Marsh, K.N., Wakeham, W.A.: Measurement of the Thermodynamic Properties of Single Phases, IUPAC Experimental Thermodynamics, vol. VI. Elsevier, Amsterdam (2003)

    Google Scholar 

  57. Brocos, P., Pineiro, A., Bravo, R., Amigo, A.: Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Phys. Chem. Chem. Phys. 5, 550–557 (2003)

    Article  CAS  Google Scholar 

  58. Seki, S., Tsuzuki, S., Hayamizu, K., Umebayashi, Y., Serizawa, N., Takei, K., Miyashiro, H.: Comprehensive refractive index property for room-temperature ionic liquids. J. Chem. Eng. Data 57, 2211–2216 (2012)

    Article  CAS  Google Scholar 

  59. Carvalho, P.J., Ventura, S.P.M., Batista, M.L.S., Schröder, B., Gonçalves, F., Esperança, J., Mutelet, F., Coutinho, J.A.P.: Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations. J. Chem. Phys. 140, 064505 (2014)

    Article  Google Scholar 

  60. Carvalho, P.J., Freire, M.G., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions for the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J. Chem. Eng. Data 53, 1346–1350 (2008)

    Article  CAS  Google Scholar 

  61. Freire, M.G., Carvalho, P.J., Fernandes, A.M., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions of imidazolium based ionic liquids: anion, cation, temperature and water effect. J. Colloid Interface Sci. 314, 621–630 (2007)

    Article  CAS  Google Scholar 

  62. Adamson, A.W., Gast, A.P.: Physical Chemistry of Surfaces. John Wiley, New York (1997)

    Google Scholar 

  63. McNaught, A.D., Wikinson, A.: Compendium of Chemical Therminology, IUPAC Recommendations. Blackwell Science, Cambridge (1997)

    Google Scholar 

  64. Miller, J.C., Miller, J.N.: Statistics for Analytical Chemistry. PTR Prentice Hall, Chichester (1993)

    Google Scholar 

  65. MacFarlane, D.R., Pringle, J.M., Johansson, K.M., Forsyth, S.A., Forsyth, M.: Lewis base ionic liquids. Chem. Commun. 18 1905–1917 (2006)

    Article  Google Scholar 

  66. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, New York (2001)

    Google Scholar 

  67. Rebelo, L.P.N., Canongia Lopes, J.N., Esperança, J.M.S.S., Filipe, E.: On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J. Phys. Chem. B. 109, 6040–6043 (2005)

    Article  CAS  Google Scholar 

  68. Shereshefsky, J.L.: Surface tension of saturated vapors and the equation of Eötvös. J. Phys. Chem. 35, 1712–1720 (1930)

    Article  Google Scholar 

  69. Guggenheim, E.A.: The principle of corresponding states. J. Chem. Phys. 13, 253–261 (1945)

    Article  CAS  Google Scholar 

  70. Birdi, K.S. (ed.): Handbook of Surface and Colloid Chemistry. CRC Press, Boca Raton (1997)

    Google Scholar 

Download references

Acknowledgments

This work was developed in the scope of the project CICECO-Aveiro Institute of Materials (Ref. FCT UID /CTM /50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. P.J.C. and A.B. also acknowledge FCT for their post-doctoral grants SFRH/BPD/82264/2011 and SFRH/BPD/77858/2011, respectively. M. G. Freire acknowledges the European Research Council (ERC) for the Starting Grant ERC-2013-StG-337753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, A., Coutinho, J.A.P., Freire, M.G. et al. Thermophysical Properties of Two Ammonium-Based Protic Ionic Liquids. J Solution Chem 44, 703–717 (2015). https://doi.org/10.1007/s10953-015-0326-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0326-0

Keywords

Navigation