Skip to main content
Log in

Density Functional Theory Study on the Cholinium Dihydrogenphosphate Ionic Liquid for Acid Gas Removal

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Cholinium dihydrogenphosphate is proposed as a new ionic liquid for acid gas removal from flue gases. A theoretical study using density functional theory and COSMO-RS approaches was carried out to get a nanoscopic picture of the interaction between the involved ions and CO2 and SO2 molcules. This computational approach allowed us to infer the main molecular features controlling gas absorption, such as preferential interaction sites, chemical potentials, binding energies, and topological properties of ion–gas interactions through the Atoms-in-a-Molecule approach. The results reported herein show that the theoretical approach allowed us to infer the most remarkable features of acid gas capture by ionic liquids, and thus it could be used for improving the ability of ionic liquids for acid gas capture purposes through molecular engineering of the ions’ properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Friedlingstein, P., Houghton, R.A., Marland, G., Hackler, G., Boden, T.A., Conway, T.J., Canadell, J.G., Raupach, M.R., Ciais, P., Le Quéré, C.: Update on CO2 emissions. Nat. Geosci. 3, 811–812 (2010)

    Article  CAS  Google Scholar 

  2. Karadas, F., Atilhan, M., Aparicio, S.: Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energ. Fuel. 24, 5817–5828 (2010)

    Article  CAS  Google Scholar 

  3. Huber, M., Knutti, R.: Antrophogenic and natural warming inferred from changes in earth’s energy balance. Nat. Geosci. 5, 31–36 (2012)

    Article  CAS  Google Scholar 

  4. Montzka, S.A., Dlugokencky, E.J., Butler, J.H.: Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011)

    Article  CAS  Google Scholar 

  5. Smith, S.J., van Aardenne, J., Klimont, Z., Andres, R.J., Volke, A., Delgado Arias, S.: Antropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys. 11, 1101–1116 (2011)

    Article  CAS  Google Scholar 

  6. Younas, O., Banat, F.: Parametric sensitivity analysis on a GASCO’s acid gas removal plant using ProMax simulator. J. Nat. Gas Sci. Technol. 18, 247–253 (2014)

    Article  CAS  Google Scholar 

  7. Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D.: Advances in CO2 capture technology; The U.S. Department of Energy’s carbon sequestration program. Int. J. Greenh. Gas Control 2, 9–20 (2008)

    Article  CAS  Google Scholar 

  8. Espinal, L., Poster, D.L., Wong-Ng, W., Allen, A., Green, M.L.: Measurement, standards, and data needs for CO2 capture materials: a critical review. Environ. Sci. Technol. 47, 11960–11975 (2013)

    Article  CAS  Google Scholar 

  9. Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C.: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Design 89, 1609–1624 (2011)

    Article  CAS  Google Scholar 

  10. Rochelle, G.T.: Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009)

    Article  CAS  Google Scholar 

  11. Rao, A.B., Rubin, E.S.: A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 36, 4467–4475 (2002)

    Article  CAS  Google Scholar 

  12. Gouedard, C., Picq, D., Launay, D., Carrette, P.L.: Amine degradation in CO2 capture. I. A review. Int. J. Greenh. Gas Control 10, 244–270 (2012)

    Article  CAS  Google Scholar 

  13. Kittel, J., Idem, R., Gelowitz, D., Tontiwachwuthikul, P., Parrain, G., Bonneau, A.: Corrosion in MEA units for CO2 capture: pilot plant studies. Energy Procedia 1, 791–797 (2009)

    Article  CAS  Google Scholar 

  14. Brennecke, J.F., Gurkan, B.E.: Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett. 1, 3459–3464 (2010)

    Article  CAS  Google Scholar 

  15. Bates, E.D., Mayton, R.D., Ntai, I., Davis, J.H.: CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 124, 926–927 (2002)

    Article  CAS  Google Scholar 

  16. Seo, S., Simoni, L.D., Ma, M., DeSilva, A., Huang, Y., Stadtherr, M.A., Brennecke, J.F.: Phase-change ionic liquids for postcombustion CO2 capture. Energ. Fuel. (2014). doi:10.1021/ef501374x

    Google Scholar 

  17. Chen, J.J., Li, W.W., Li, X.L., Yu, H.Q.: Carbon dioxide capture by aminoalkylimidazolium-based ionic liquid: a computational investigation. Phys. Chem. Chem. Phys.: PCCP 14, 4589–4596 (2012)

    Article  CAS  Google Scholar 

  18. Sanz, V., Alcalde, R., Atilhan, M., Aparciio, S.: Insights from quantum chemistry into piperazine-based ionic liquids and their behavior with regards to CO2. J. Mol. Model. 20, 2107 (2014)

  19. Yu, G., Chen, X.: SO2 capture by guanidinium-based ionic liquids: a theoretical study. J. Phys. Chem. B 115, 3466–3477 (2011)

    Article  CAS  Google Scholar 

  20. Fukumoto, K., Yoshizawa, M., Ohno, H.: Room temperature ionic liquids from 20 natural aminoacids. J. Am. Chem. Soc. 127, 2398–2399 (2005)

    Article  CAS  Google Scholar 

  21. Hou, X.D., Liu, Q.P., Smith, T.J., Li, N., Zong, M.H.: Evaluation of toxicity and biodegradability of choliniumaminoacids ionic liquids. PLoS ONE 8, e59145 (2013)

    Article  CAS  Google Scholar 

  22. Couling, D.J., Bernot, R.J., Docherty, K.M., Dixon, J.K., Maginn, E.J.: Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem. 8, 32–90 (2006)

    Article  Google Scholar 

  23. Costa, A.J.L., Soromenho, M.R.C., Shimizu, K., Marrucho, I.M., Esperanca, J.M.S.S., Rebelo, L.P.N., Esperanca, J.M.S.S.: Density, thermal expansion and viscosity of cholinium-derived ionic liquids. ChemPhysChem 13, 1902–1909 (2012)

    Article  CAS  Google Scholar 

  24. Aparicio, S., Atilhan, M., Khraisheh, M., Alcalde, R., Fernández, J.: Study of hydroxylammonium ionic liquids. II. Computational analysis of CO2 absorption. J. Phys. Chem. B 115, 12487–12498 (2011)

    Article  CAS  Google Scholar 

  25. Bazhenov, S., Ramdin, M., Volkov, A., Volkov, V., Vlogt, T.J.H., de Loos, T.W.: CO2 solubility in biodegradable hydroxylammonium-based ionic liquids. J. Chem. Eng. Data 59(702–708), 13 (2014)

    Google Scholar 

  26. Eckert, F., Klamt, A.: Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 48, 369–385 (2002)

    Article  CAS  Google Scholar 

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, revision D.01. Gaussian, Inc., Wallingford, CT (2010)

  28. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  29. Becke, A.D.: Density-functional thermochemistry III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  30. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)

    Article  CAS  Google Scholar 

  31. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  CAS  Google Scholar 

  32. Cohen, A.J., Mori-Sánchez, P., Yang, W.: Challenges for density functional theory. Chem. Rev. 112, 289–320 (2012)

    Article  CAS  Google Scholar 

  33. Schwabe, T., Grimme, S.: Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys. Chem. Chem. Phys. 9, 3397–3406 (2007)

    Article  CAS  Google Scholar 

  34. Simon, S., Duran, M., Dannenberg, J.J.: How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 105, 11024–11031 (1996)

    Article  CAS  Google Scholar 

  35. Bader, R.F.W.: Atoms in Molecules: a Quantum Theory. Oxford (1990)

  36. Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012)

    Article  Google Scholar 

  37. Breneman, C.M., Wiberg, K.B.: Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990)

    Article  CAS  Google Scholar 

  38. Gonzalez-Miguel, M., Talreja, M., Ethier, A.L., Flack, K., Switzer, J.R., Biddinger, E.J., Pollet, P., Palomar, J., Rodriguez, F., Eckert, C.A., Liotta, C.L.: COSMO-RS studies: structure–property relationships for CO2 capture by reversible ionic liquids. Ind. Eng. Chem. Res. 51, 16066–16073 (2012)

    Article  Google Scholar 

  39. Zhang, X., Liu, Z., Wang, W.: Screening of ionic liquids to capture CO2 by COSMO-RS and experiments. AIChE J. 54, 2717–2728 (2008)

    Article  CAS  Google Scholar 

  40. Ab-Manan, N., Hardacre, C., Jacquemin, J., Rooney, D.W., Youngs, T.G.A.: Evaluation of gas solubility prediction in ionic liquids using COSMOthermX. J. Chem. Eng. Data 54, 2005–2022 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was made possible by the support of an NPRP Grant (No: 6-330-2-140) from the Qatar National Research Fund. The statements made herein are solely the responsibility of the authors. Gregorio García acknowledges funding by Junta de Castilla y León, cofunding by the European Social Fund, for a postdoctoral contract. We also acknowledge the Computing and Advances Technologies Foundation of Extremadura (CénitS, LUSITANIA Supercomputer, Spain) and Consortium of Scientific and Academic Services of Cataluña (CSUC, Spain) for providing the supercomputing facilities. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santiago Aparicio or Mert Atilhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, G., Aparicio, S. & Atilhan, M. Density Functional Theory Study on the Cholinium Dihydrogenphosphate Ionic Liquid for Acid Gas Removal. J Solution Chem 44, 890–899 (2015). https://doi.org/10.1007/s10953-015-0324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0324-2

Keywords

Navigation