Skip to main content
Log in

Interesting Viscosity Changes in the Aqueous Urea–Ionic Liquid System: Effect of Alkyl Chain Length Attached to the Cationic Ring of an Ionic Liquid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In the present article, we demonstrate the effect of urea on the structure of the ionic liquids in their aqueous solutions through viscometric methods. We unravel the structure altering effect of urea in its aqueous solutions of ionic liquids possessing higher alkyl chains. The finding is an attempt to discern the anomalous behavior of urea as shown in the past with the help of many techniques. Interestingly, in the aqueous solutions of the imidazolium based ionic liquids having substitution of –C4H9 and –C6H13 groups on the imidazolium ring, urea exhibits kosmotropic behavior. Further increase in the substituted alkyl group such as –C8H17 alters the urea behavior to be chaotropic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  2. Earle, M.J., Seddon, K.R.: Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000)

    Article  CAS  Google Scholar 

  3. Wassercheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis. Wiley-VCH, Stuttgart (2002)

    Google Scholar 

  4. Wassercheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  5. Fujita, K., MacFarlane, D.R., Forsyth, M., Fujita, M.Y., Murata, K., Nakamura, N., Ohno, H.: Solubility and stability of cytochrome c in hydrated ionic liquids: effect of oxo acid residues and kosmotropicity. Biomacromolecules 8, 2080–2086 (2007)

    Article  CAS  Google Scholar 

  6. Fujita, K., Ohno, H.: Enzymatic activity and thermal stability of metallo proteins in hydrated ionic liquids. Biopolymers 93, 1093–1099 (2010)

    Article  CAS  Google Scholar 

  7. Tiwari, S., Kumar, A.: Diels Alder reaction in water is faster than in ionic liquids. Angew. Chem. Int. Ed. 45, 4824–4825 (2006)

    Article  CAS  Google Scholar 

  8. Tiwari, S., Khupse, N.D., Kumar, A.: Intramolecular Diels–Alder reaction in ionic liquids: effect of ion-specific solvent friction. J. Org. Chem. 73, 9075–9083 (2008)

    Article  CAS  Google Scholar 

  9. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. J. Chem. Eng. Data 51, 1161–1167 (2006)

    Article  CAS  Google Scholar 

  10. Jacquemin, J., Husson, P., Padua, A.A.H., Majer, V.: Density and viscosity of pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)

    Article  CAS  Google Scholar 

  11. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)

    Article  CAS  Google Scholar 

  12. Jacquemin, J., Anouti, M., Lemordant, D.: Physico-chemical properties of non-Newtonian shear thickening diisopropyl-ethylammonium based protic ionic liquids and their mixtures with water and acetonitrile. J. Chem. Eng. Data 56, 556–564 (2011)

    Article  CAS  Google Scholar 

  13. Khupse, N.D., Kumar, A.: Delineating solute–solvent interactions in the binary mixtures of ionic liquids in molecular solvents and preferential solvation approach. J. Phys. Chem. B 115, 711–718 (2011)

    Article  CAS  Google Scholar 

  14. Rai, G., Kumar, A.: Elucidation of ionic interactions in the protic ionic liquid solutions by isothermal titration calorimetry. J. Phys. Chem. B 118, 4160–4168 (2014)

    Article  CAS  Google Scholar 

  15. Manna, A., Kumar, A.: Invoking pairwise interactions in the water-promoted Diels–Alder reactions using ionic liquid as a co-solvent. ChemPhysChem, Page number not available yet. doi:10.1002/cphc.201402338

  16. Franks, F.: Water. A Comprehensive Treatise. Plenum Press, New York. Vol. 1, (1972); Vol. 3 (1973); Vol. 6 (1979)

  17. Gurney, R.W.: lonic Processes in Solution. McGraw-Hill, New York (1953)

    Google Scholar 

  18. Frank, H.S., Wen, W.Y.: Ion-solvent interaction structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure. Discuss. Faraday Soc. 24, 133–140 (1957)

    Article  Google Scholar 

  19. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  20. Marcus, Y.: Ion Solvation. Wiley-Interscience, UK (1985)

    Google Scholar 

  21. Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1970 (2009)

    Article  CAS  Google Scholar 

  22. Yamazaki, T., Kovalenko, A., Murashov, V.V., Patey, G.N.: Ion solvation in a water–urea mixture. J. Phys. Chem. B 114, 613–619 (2010)

    Article  CAS  Google Scholar 

  23. Funkner, S., Havenith, M., Schwaab, G.: Urea, a structure breaker? Answer from THz absorption spectroscopy. J. Phys. Chem. B 116, 13374–13380 (2012)

    Article  CAS  Google Scholar 

  24. von Hippel, P.H., Wong, K.Y.: Neutral salts: The generality of their effects on the stability of macromolecular conformation. Science 145, 577–580 (1964)

    Article  Google Scholar 

  25. McKenzie, H.A., Ralston, G.B.: The denaturation of proteins: Two states? Reversible or irreversible? Experientia 27, 617–624 (1971)

    Article  CAS  Google Scholar 

  26. Weerasinghe, S., Smith, P.E.: Cavity formation and preferential interactions in urea solutions: Dependence on urea aggregation. J. Chem. Phys. 118, 5901–5910 (2003)

    Article  CAS  Google Scholar 

  27. Bennion, B.J., Daggett, V.: The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl. Acad. Sci. U.S.A. 100, 5142–5147 (2003)

    Article  CAS  Google Scholar 

  28. Rosgen, J., Pettitt, B.M., Bolen, D.W.: Uncovering the basis for nonideal behaviour of biological molecules. Biochemistry 43, 14472–14484 (2004)

    Article  Google Scholar 

  29. Bonhote, P., Dias, A., Papageorgiou, N., Kalyanasundaram, K., Graltzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996)

    Article  CAS  Google Scholar 

  30. Suarez, P.A.Z., Einloft, S., Dullius, J.E.L., de Souza, R.F., Dupont, J.J.: Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. Chim. Phys. Phys. Chim. Biol. 95, 1626–1639 (1998)

    Article  CAS  Google Scholar 

  31. Khupse, N.D., Kumar, A.: The cosolvent-directed Diels–Alder reaction in ionic liquids. J. Phys. Chem. A 115, 10211–10217 (2011)

    Article  CAS  Google Scholar 

  32. Huddleston, J.G., Visser, A.E., Reichert, W.M.: Brokers, H.D.W.G.A., Rogers, R.D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001)

    Article  CAS  Google Scholar 

  33. Noda, A., Hayamizu, K., Watanbe, M.: Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room temperature ionic liquids. J. Phys. Chem. B 105, 4603–4610 (2001)

    Article  CAS  Google Scholar 

  34. For example see: Stark, A., Behrend, P., Braun, O., Muller, A., Ranke, J., Ondruschka, B., Jastorff, B.: Purity specification methods for ionic liquids. Green Chem. 10, 1152–1161 (2008)

  35. Seddon, K.R., Stark, A., Torres, M.J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)

    Article  CAS  Google Scholar 

  36. Kim, K.-S., Shin, B.-K., Lee, H.: Physical and electrochemical properties of 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3-methylimidazolium tetrafluoroborate. Korean J. Chem. Eng. 21, 1010–1014 (2004)

    Article  CAS  Google Scholar 

  37. Sastry, N.V., Vaghela, N.M., Macwan, P.M.: Densities, excess molar and partial molar volumes for water + 1-butyl-or, 1-hexyl-or, 1-octyl-3-methylimidazolium halide room temperature ionic liquids at T = (298.15 and 308.15) K. J. Mol. Liq. 180, 12–18 (2013)

    Article  CAS  Google Scholar 

  38. Li, J.-G., Hu, Y.-F., Sun, S.-F., Liu, Y.-S., Liu, Z.-C.: Densities and dynamic viscosities of the binary system (water + 1-hexyl-3-methylimidazolium bromide) at different temperatures. J. Chem. Thermodyn. 42, 904–908 (2010)

    Article  CAS  Google Scholar 

  39. Sanmamed, Y.A., González-Salgado, D., Troncoso, J., Cerdeirina, C.A., Romani, L.: Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equil. 252, 96–102 (2007)

    Article  CAS  Google Scholar 

  40. Mokhtarani, B., Mojtahedi, M.M., Mortaheb, H.R., Mafi, M., Yazdani, F., Sadeghian, F.: Densities, refractive indices, and viscosities of the ionic liquids 1-methyl-3-octylimidazolium tetrafluoroborate and 1-methyl-3-butylimidazolium perchlorate and their binary mixtures with ethanol at several temperatures. J. Chem. Eng. Data 53, 677–682 (2008)

    Article  CAS  Google Scholar 

  41. Horne, R.A. (ed.): Water and Aqueous Solutions, Structure, Thermodynamics and Transport Processes. Wiley-Interscience, New York, (1972)

  42. Isono, T.: Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. alkaline-earth chlorides, LaCl3, Na2(SO4), NaNO3, NaBr, KNO3, KBr, and Cd(NO3)2. J. Chem. Eng. Data 29, 45–52 (1984)

    Article  CAS  Google Scholar 

  43. Liu, W., Zhao, T., Zhang, Y., Wang, H., Yu, M.: The physical properties of aqueous solutions of the ionic liquids [C4mim][BF4]. J. Solution Chem. 35, 1337–1346 (2006)

    Article  Google Scholar 

  44. Hu, H.C., Soriano, A.N., Leron, R.B., Li, M.H.: Molar heat capacity of four aqueous ionic liquid mixtures. Thermochim. Acta 519, 44–49 (2011)

    Article  CAS  Google Scholar 

  45. Verevkin, S.P., Zaitsau, D.H., Emelyanenko, V.N., Ralys, R.V., Yermalayeu, A.V., Schick, C.: Does alkyl chain length really matter? Structure–property relationships in thermochemistry of ionic liquids. Thermochim. Acta 562, 84–95 (2013)

    Article  CAS  Google Scholar 

  46. Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., Hamaguchi, H.: Rotational isomerism and structure of the 1-Butyl-3-methylimidazolium cation in the ionic liquid state. Chem. Lett. 32, 948–949 (2003)

    Article  CAS  Google Scholar 

  47. Mukerjee, P., Ray, A.: The effect of urea on micelle formation and hydrophobic bonding. J. Phys. Chem. 67, 190–192 (1963)

    Article  CAS  Google Scholar 

  48. Rezus, Y.L.A., Bakker, H.J.: Effect of urea on the structural dynamics of water. Proc. Natl. Acad. Sci. U.S.A. 103, 18417–18420 (2006)

    Article  CAS  Google Scholar 

  49. Carvalho, B.L., Briganti, G., Chen, S.H.: Lowering of the miscibility gap in the dioctanoylphosphatidylcholine–water system by addition of urea. J. Phys. Chem. 93, 4282–4286 (1989)

    Article  CAS  Google Scholar 

  50. Dias, L.G., Florenzano, F.H., Reed, W.F., Baptista, M.S., Souza, S.M.B., Alvarez, E.B., Chaimovich, H., Cuccovia, I.M., Amaral, C.L.C., Brasil, C.R., Romsted, L.S., Politi, M.J.: Effect of urea on biomimetic systems: Neither water 3-D structure rupture nor direct mechanism, simply a more “polar water”. Langmuir 18, 319–324 (2002)

    Article  CAS  Google Scholar 

  51. Schick, M.J.: Effect of electrolyte and urea on micelle formation. J. Phys. Chem. 68, 3585–3592 (1964)

    Article  CAS  Google Scholar 

  52. Jungnickel, C., Łuczak, J., Ranke, J., Fernandez, J., Muller, A., Thoming, J.: Micelle formation of imidazolium ionic liquids in aqueous solution. Coll. Surf. A: Physicochem. Eng. Aspects 316, 278–284 (2008)

    Article  CAS  Google Scholar 

  53. Abraham, M.H., Liszi, J., Papp, E.: Calculations on ionic solvation Part 6. Structure-making and structure-breaking effects of alkali halide ions from electrostatic entropies of solvation. Correlation with viscosity B-coefficients, nuclear magnetic resonance B-coefficients and partial molal volumes. Chem. Soc. Faraday. Trans.78, 197–211 (1982)

  54. Yoshida, K., Ibuki, K., Ueno, M.: Estimated ionic B-coefficients from NMR measurements in aqueous electrolyte solutions. J. Solution Chem. 25, 435–453 (1996)

    Article  CAS  Google Scholar 

  55. Wen, W.Y., Kaatze, U.: Aqueous solutions of azoniaspiroalkane halides. 3. Dielectric relaxation. J. Phys. Chem. 81, 177–181 (1977)

    Article  CAS  Google Scholar 

  56. Tromans, A., May, P.M., Hefter, G., Sato, T., Buchner, R.: Ion pairing and solvent relaxation processes in aqueous solutions of sodium malonate and sodium succinate. J. Phys. Chem. B 108, 13789–13795 (2004)

    Article  CAS  Google Scholar 

  57. Wachter, W., Fernandez, S., Buchner, R., Hefter, G.: Ion association and hydration in aqueous solutions of LiCl and Li2SO4 by dielectric spectroscopy. J. Phys. Chem. B 111, 9010–9017 (2007)

    Article  CAS  Google Scholar 

  58. Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J.: Negligible effect of ions on the hydrogen-bond structure in liquid water. Science. 301, 347–349 (2003) and references cited therein

  59. Bakker, H.J., Kropman, M.F., Omta, A.W.: Effect of ions on the structure and dynamics of liquid water. J. Phys. 17, S3215–S3224 (2005) and references cited therein

  60. Mancinelli, R., Botti, A., Bruni, M.A., Soper, A.K.: Perturbation of water structure due to monovalent ions in solution. Phys. Chem. Chem. Phys. 9, 2959–2967 (2007)

    Article  CAS  Google Scholar 

  61. Marcus, Y.: Electrostriction in electrolyte solutions. Chem. Rev. 111, 2761–2783 (2011)

    Article  CAS  Google Scholar 

  62. Tielrooij, K.J., Garcia-Araez, N., Bonn, M., Bakker, H.J.: Cooperativity in ion hydration. Science 328, 1006–1009 (2010)

    Article  CAS  Google Scholar 

  63. Idrissi, A., Cinar, E., Longelin, S., Damay, P.: The effect of temperature on urea–urea interactions in water: a molecular dynamics simulation. J. Mol. Liq. 110, 201–208 (2004)

    Article  CAS  Google Scholar 

  64. Sacco, A., Holz, M.: NMR studies on hydrophobic interactions in solution Part 2.—Temperature and urea effect on the self-association of ethanol in water. J. Chem. Soc. Faraday Trans. 93, 1101–1104 (1997)

    Article  CAS  Google Scholar 

  65. Soper, A.K., Castner, E.W., Luzar, A.: Impact of urea on water structure: a clue to its properties as a denaturant? Biophys. Chem. 105, 649–666 (2003)

    Article  CAS  Google Scholar 

  66. Shimizu, A., Fumino, K., Yukiyasu, K., Tanaguchi, Y.: NMR studies on dynamic behavior of water molecule in aqueous denaturant solutions at 25 °C: Effects of guanidine hydrochloride, urea and alkylated ureas. J. Mol. Liq. 85, 269–278 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RN acknowledges the CSIR, New Delhi, for awarding a research fellowship. Both GR and AK thank DST, New Delhi for supporting this research through a J. C. Bose National Fellowship (SR/S2/JCB-26/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanda, R., Rai, G. & Kumar, A. Interesting Viscosity Changes in the Aqueous Urea–Ionic Liquid System: Effect of Alkyl Chain Length Attached to the Cationic Ring of an Ionic Liquid. J Solution Chem 44, 742–753 (2015). https://doi.org/10.1007/s10953-015-0320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0320-6

Keywords

Navigation