Skip to main content
Log in

Modulation of Micellization Behavior of Cetyltrimethylammonium Bromide (CTAB) by Organic Anions in Low Concentration Regime

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Micellization of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in dilute aqueous solutions of sodium butyrate (Na-Bu), sodium benzoate (Na-Ben) and sodium salicylate (Na-Sal) at different concentrations, viz. 0.005, 0.01, and 0.05 mol·L−1, has been investigated. Conductivity, steady-state fluorescence, dynamic light scattering (DLS), atomic force microscopy (AFM), and 1H NMR techniques shed light on different aspects of micellization. Various micellization parameters such as critical micelle concentration (cmc), degree of ionization of micelle (α), and standard Gibbs energy of micellization (\( \Delta G_{\text{m}}^{\text{o}} \)) have been obtained from conductivity measurements. Steady-state fluorescence has provided useful information about the cmc, polarity of cybotactic region and aggregation number of micelles of CTAB using pyrene as fluorescent probe in various aqueous salt solutions. The data have been analyzed in terms of hydrophobicity/hydrophilicity and polarizability of the anions of the added electrolytes. The content and nature of organic anions governs the shape and size of the micelles as revealed by DLS and AFM measurements. In the dilute concentration regime of added electrolytes, contrary to most of the reported studies pertaining to very high concentration of added electrolyte, no worm like micelles forming a gel like structure have been observed. 1H NMR experiments provided information about the sites of interaction of anions of added electrolytes with the surfactant head group.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3

Similar content being viewed by others

References

  1. Bergström, M.: Derivation of size distributions of surfactant micelles taking into account shape, composition, and chain packing density fluctuations. J. Coll. Interface Sci. 181, 208–219 (1996)

    Article  Google Scholar 

  2. Romsted, L.S.: Do amphiphile aggregate morphologies and interfacial compositions depend primarily on interfacial hydration and ion-specific interactions? The evidence from chemical trapping. Langmuir 23, 414–424 (2007)

    Article  CAS  Google Scholar 

  3. Sein, A., Engberts, J.B.F.N.: Micelle to lamellar aggregate transition of an anionic surfactant in dilute aqueous solution induced by alkali metal chloride and tetraalkylammonium chloride salts. Langmuir 11, 455–465 (1995)

    Article  CAS  Google Scholar 

  4. Liu, S., González, Y.I., Kaler, E.W.: Structural fixation of spontaneous vesicles in aqueous mixtures of polymerizable anionic and cationic surfactants. Langmuir 19, 10732–10738 (2003)

    Article  CAS  Google Scholar 

  5. Jurašin, D., Vinceković, M., Pustak, A., Šmit, I., Bujan, M., Filipović-Vinceković, N.: Lamellar to hexagonal columnar liquid crystalline phase transition in a catanionic surfactant mixture: dodecylammonium chloride–sodium bis(2-ethylhexyl) sulfosuccinate. Soft Matt. 9, 3349–3360 (2013)

    Article  Google Scholar 

  6. Singh, K., Dharaiya, N., Marangoni, D.G., Bahadur, P.: Dissimilar effects of solubilized p-toluidine on the shape of micelles of differently charged surfactants. Colloids Surf. A 436, 521–529 (2013)

    Article  CAS  Google Scholar 

  7. Bijma, K., Engberts, J.B.F.N.: Effect of counterions on properties of micelles formed by alkylpyridinium surfactants. 1. Conductometry and 1H-NMR chemical shifts. Langmuir 13, 4843–4849 (1997)

    Article  CAS  Google Scholar 

  8. Nan, Y.Q., Hao, L.S.: Salt-induced phase inversion in aqueous cationic/anionic surfactant two-phase systems. J. Phys. Chem. B 112, 12326–12337 (2008)

    Article  CAS  Google Scholar 

  9. Maiti, K., Mitra, D., Guha, S., Moulik, S.P.: Salt effect on self-aggregation of sodium dodecylsulfate (SDS) and tetradecyltrimethylammonium bromide (TTAB): physicochemical correlation and assessment in the light of Hofmeister (lyotropic) effect. J. Mol. Liq. 146, 44–51 (2009)

    Article  CAS  Google Scholar 

  10. Kang, K.H., Kim, H.U., Lim, K.H.: Effect of temperature on critical micelle concentration and thermodynamic potentials of micellization of anionic ammonium dodecyl sulfate and cationic octadecyltrimethyl ammonium chloride. Colloids Surf. A 189, 113–121 (2001)

    Article  CAS  Google Scholar 

  11. Benrraou, M., Bales, B.L., Zana, R.: Effect of the nature of the counterion on the properties of anionic surfactants. 1. cmc, ionization degree at the cmc and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. J. Phys. Chem. B 107, 13432–13440 (2003)

    Article  CAS  Google Scholar 

  12. Zana, R., Benrraou, M., Bales, B.L.: Effect of the nature of the counterion on the properties of anionic surfactants. 3, Self-association behavior of tetrabutylammonium dodecylsulfate and tetradecyl sulfate: clouding and micellar growth. J. Phys. Chem. B 108, 18195–18203 (2004)

    Article  CAS  Google Scholar 

  13. Renoncourt, A., Vlachy, N., Bauduin, P., Drechsler, M., Touraud, D., Verbavatz, J.M., Dubois, M., Kunz, W., Ninham, B.W.: Specific alkali cation effects in the transition from micelles to vesicles through salt addition. Langmuir 23, 2376–2381 (2007)

    Article  CAS  Google Scholar 

  14. Ali, M., Jha, M., Das, S.K., Saha, S.K.: Hydrogen-bond-induced microstructural transition of ionic micelles in the presence of neutral naphthols: pH dependent morphology and location of surface activity. J. Phys. Chem. B 113, 15563–15571 (2009)

    Article  CAS  Google Scholar 

  15. Clausen, T.M., Vinson, P.K., Minter, J.R., Davis, H.T., Talmon, Y., Miller, W.G.: Viscoelastic micellar solutions: microscopy and rheology. J. Phys. Chem. 96, 474–484 (1992)

    Article  CAS  Google Scholar 

  16. Lin, Z., Cai, J.J., Scriven, L.E., Davis, H.T.: Spherical-to-wormlike micelle transition in CTAB solutions. J. Phys. Chem. 98, 5984–5993 (1994)

    Article  CAS  Google Scholar 

  17. Laisen, J.W., Tepley, L.B.: Interactions of some aromatic salts with hexadecyltrimethylammonium bromide micelles. Viscosity, counterion binding, and calorimetric observations. J. Org. Chem. 41, 2968–2970 (1976)

    Article  Google Scholar 

  18. Bachofer, S.J., Simonis, U., Nowicki, T.A.: Orientational binding of substituted naphthoate counterions to the tetradecyltrimethylammonium bromide micellar interface. J. Phys. Chem. 95, 480–488 (1991)

    Article  CAS  Google Scholar 

  19. Nemoto, N., Kuwahara, M.: Dynamic light scattering of CTAB/sodium salicylate long threadlike micelles in the semidilute regime: applicability of the dynamic scaling law. Langmuir 9, 419–423 (1993)

    Article  CAS  Google Scholar 

  20. Kim, W.J., Yang, S.M.: Microstructures and rheological responses of aqueous CTAB solutions in the presence of benzyl additives. Langmuir 16, 6084–6093 (2000)

    Article  CAS  Google Scholar 

  21. Aswal, V.K.: Effect of the hydrophilicity of aromatic counterions on the structure of ionic micelles. J. Phys. Chem. B 107, 13323–13328 (2003)

    Article  CAS  Google Scholar 

  22. Kumar, S., David, S.L., Aswal, V.K., Goyal, P.S.: Kabir-ud-Din: Growth of sodium dodecylsulfate micelles in aqueous ammonium salts. Langmuir 13, 6461–6464 (1997)

    Article  CAS  Google Scholar 

  23. Mukhim, T., Dey, J., Das, S., Ismail, K.: Aggregation and adsorption behavior of cetylpyridinium chloride in aqueous sodium salicylate and sodium benzoate solutions. J. Coll. Interface Sci. 350, 511–515 (2010)

    Article  CAS  Google Scholar 

  24. Shikata, T., Hirata, H., Kotaka, T.: Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide–sodium salicylate solutions. Langmuir 4, 354–359 (1988)

    Article  CAS  Google Scholar 

  25. Bachofer, S.J., Turbitt, R.M.: The orientational binding of substituted benzoate anions at the cetyltrimethylammonium bromide interface. J. Coll. Interface Sci. 135, 325–334 (1990)

    Article  CAS  Google Scholar 

  26. Sinha, S., Dogra, A., Jain, N.J., Bahadur, P.: Effect of organic counter-ions on the surface activity, micellar formation and solubilizing behaviour of a cationic surfactant. Indian J. Chem. 37A, 118–124 (1998)

    CAS  Google Scholar 

  27. Roy, B.K., Moulik, S.P.: Energetic, surface-chemical and hydrodynamic studies on cetyltrimethylammonium bromide and sodium salicylate. Indian J. Chem. 38A, 17–25 (1999)

    CAS  Google Scholar 

  28. Bachofer, S.J., Simonis, U.: Determination of the ion exchange constants of four aromatic organic anions competing for a cationic micellar interface. Langmuir 12, 1744–1754 (1996)

    Article  CAS  Google Scholar 

  29. Oelschlaeger, C., Suwita, P., Willenbacher, N.: Effect of counterion binding efficiency on structure and dynamics of worm like micelles. Langmuir 26, 7043–7053 (2010)

    Article  Google Scholar 

  30. Takeda, M., Kusano, T., Matsunaga, T., Endo, H., Shibayama, M., Shikata, T.: Rheo-SANS studies on shear-thickening/thinning in aqueous rod like micellar solutions. Langmuir 27, 1731–1738 (2011)

    Article  CAS  Google Scholar 

  31. Das, N.C., Cao, H., Kaiser, H., Warren, G.T., Gladden, J.R., Sokol, P.E.: Shape and size of highly concentrated micelles in CTAB/NaSal solutions by small angle neutron scattering (SANS). Langmuir 28, 11962–11968 (2012)

    Article  CAS  Google Scholar 

  32. Naskar, B., Dan, A., Ghosh, S., Aswal, V.K., Moulik, S.P.: Revisiting the self-aggregation behavior of cetyltrimethylammonium bromide in aqueous sodium salt solutions with varied anions. J. Mol. Liquids 170, 1–10 (2012)

    Article  CAS  Google Scholar 

  33. Wang, Z., Larson, R.G.: Molecular dynamics simulations of thread like cetyltrimethylammonium chloride micelles: effects of sodium chloride and sodium salicylate salts. J. Phys. Chem. B 113, 13697–13710 (2009)

    Article  CAS  Google Scholar 

  34. Francisco, K.R., da Silva, M.A., Sabadini, E., Karlsson, G., Dreiss, C.A.: Effect of monomeric and polymeric co-solutes on cetyltrimethylammonium bromide wormlike micelles: rheology, Cryo-TEM and Small-angle neutron scattering. J. Colloid Interface Sci. 345, 351–359 (2010)

    Article  CAS  Google Scholar 

  35. Pei, X., Zhao, J., Wei, X.: Comparative study of the viscoelastic wormlike micellar solutions of hexanediyl-α,ω-bis(dimethylcetylammonium bromide) and cetyltrimethylammonium bromide in the presence of sodium salicylate. Colloids Surf. A 366, 203–207 (2010)

  36. Vermathen, M., Stiles, P., Bachofer, S.J., Simonis, U.: Investigations of monofluoro-substituted benzoates at the tetradecyltrimethylammonium micellar interface. Langmuir 18, 1030–1042 (2002)

    Article  CAS  Google Scholar 

  37. Abezgauz, L., Kuperkar, K., Hassan, P.A., Ramon, O., Bahadur, P., Danino, D.: Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride. J. Colloid Interface Sci. 342, 83–92 (2010)

    Article  CAS  Google Scholar 

  38. Ramanathan, M., Shrestha, L.K., Mori, T., Ji, Q., Hill, J.P., Ariga, K.: Amphiphile nanoarchitectonics from basic physical chemistry to advanced applications. Phys. Chem. Chem. Phys. 15, 10580–10611 (2013)

    Article  CAS  Google Scholar 

  39. Murphy, C.J., Jana, N.R.: Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14, 80–82 (2002)

    Article  CAS  Google Scholar 

  40. Gao, J., Bender, C.M., Murphy, C.J.: Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19, 9065–9070 (2003)

    Article  CAS  Google Scholar 

  41. Blankschtein, D., Yuet, P.K.: Effect of surfactant tail-length asymmetry on the formation of mixed surfactant vesicles. Langmuir 12, 3819–3827 (1996)

    Article  Google Scholar 

  42. Jacques, K.: Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol. Cell. Biochem. 42, 65–82 (1981)

    Google Scholar 

  43. Krebs, H.A., Wiggins, D.M., Sols, S.A., Bedoya, F.: Studies on the mechanism of the antifungal action of benzoate. Biochem. J. 214, 657–663 (1983)

    CAS  Google Scholar 

  44. Lidija, K., Cammenga, J., Wisniewski, H.G., Nimer, S.D.: Sodium salicylate activates caspases and induces apoptosis of myeloid leukemia cell lines. Blood 93, 2386–2394 (1999)

    Google Scholar 

  45. Koga, Y., Nishikawa, K., Westh, P.: “Icebergs” or no “icebergs” in aqueous alcohols? Composition-dependent mixing schemes. J. Phys. Chem. A 108, 3873–3877 (2004)

    Article  CAS  Google Scholar 

  46. Rakitin, A.R., Pack, G.R.: Necessity of aromatic carboxylate anions to be planar to induce growth of cationic micelles. Langmuir 21, 837–840 (2005)

    Article  CAS  Google Scholar 

  47. Kalyanasundaram, K., Thomas, J.K.: Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 99, 2039–2044 (1977)

    Article  CAS  Google Scholar 

  48. Aguiar, J., Carpena, P., Molina-Bolívar, J.A., Ruiz, C.C.: On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 258, 116–122 (2003)

    Article  CAS  Google Scholar 

  49. Kalyanasundaram, K.: Photochemistry in Microheterogeneous Systems. Academic Press, San Diego (1987)

    Google Scholar 

  50. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles, p. 530. Wiley, New York (1983)

    Google Scholar 

  51. Movchan, T.G., Soboleva, I.V., Plotnikova, E.V., Shchekin, A.K., Rusanov, A.I.: Dynamic light scattering study of cetyltrimethylammoniumbromide aqueous solutions. Colloid J. 74, 239–247 (2012)

    Article  CAS  Google Scholar 

  52. Dorshow, R., Briggs, J., Bunton, C.A., Nicoli, D.F.: Dynamic light scattering from cetyltrimethylammonium bromide micelles. Intermicellar interactions at low ionic strengths. J. Phys. Chem. 86, 2388–2395 (1982)

    Article  CAS  Google Scholar 

  53. Alargova, R., Petkov, J., Petsev, D., Ivanov, I.B., Broze, G., Mehreteab, A.: Light scattering study of sodium dodecyl polyoxyethylene-2-sulfatemicelles in the presence of multivalent counterions. Langmuir 11, 1530–1536 (1995)

    Article  CAS  Google Scholar 

  54. Raghavan, S.R., Kaler, E.W.: Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17, 300–306 (2001)

    Article  CAS  Google Scholar 

  55. Singh, T., Kumar, A.: Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions. J. Phys. Chem. B 111, 7843–7851 (2007)

    Article  CAS  Google Scholar 

  56. Davey, T.W., Ducker, W.A., Hayman, A.R.: Aggregation of ω-hydroxy quaternary ammonium bolaform surfactants. Langmuir 16, 2430–2435 (2000)

    Article  CAS  Google Scholar 

  57. Lemyre, J.L., Ritcey, A.M.: Characterization of a reverse micellar system by 1H-NMR. Langmuir 26, 6250–6255 (2010)

    Article  CAS  Google Scholar 

  58. Vigderman, L., Manna, P., Zubarev, E.R.: Quantitative replacement of cetyltrimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew. Chem. Int. Ed. 51, 636–641 (2012)

    Article  CAS  Google Scholar 

  59. Tonelli, A.E.: NMR Spectroscopy and Polymer Microstructure: The Conformational Connection. VCH, New York (1989)

    Google Scholar 

  60. Taboada, P., Attwood, D., Ruso, J.M., Sarmiento, F., Mosquera, V.: Self-association of amphiphilic penicillins in aqueous electrolyte solution: a light-scattering and NMR study. Langmuir 15, 2022–2028 (1999)

    Article  CAS  Google Scholar 

  61. Nagamura, T., Mihara, S., Okahata, Y., Kunitake, T., Matsuo, T.: NMR and fluorescence studies on self-assembling behaviour of dialkyldimethylammoinum salts in aqueous solutions. Ber. Bunsen-Ges. 82, 1093–1098 (1978)

    Article  CAS  Google Scholar 

  62. Bloembergen, N., Purcell, E.M., Pound, R.V.: Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679–712 (1948)

    Article  CAS  Google Scholar 

  63. Kreke, P.J., Magid, L.J., Gee, J.C.: 1H and 13C NMR studies of mixed counterion, cetyltrimethylammonium bromide/cetyltrimethylammoniumdichlorobenzoate, surfactant solutions: the intercalation of aromatic counterions. Langmuir 12, 699–705 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance by UGC, Government of India wide project number F. 20-24(12)/2012(BSR) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejwant Singh Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharmoria, P., Vaneet, Banipal, P.K. et al. Modulation of Micellization Behavior of Cetyltrimethylammonium Bromide (CTAB) by Organic Anions in Low Concentration Regime. J Solution Chem 44, 16–33 (2015). https://doi.org/10.1007/s10953-014-0271-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0271-3

Keywords

Navigation