Skip to main content
Log in

Theoretical Study on the Hydration Structure of Divalent Radium Ion Using Fragment Molecular Orbital–Molecular Dynamics (FMO–MD) Simulation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Using fragment molecular orbital–molecular dynamics (FMO–MD) simulation at the FMO3-HF/6-31G(d,p) level, the hydration of a Ra2+ ion was theoretically investigated. The first peaks of the radial distribution function (RDF) for Ra–O and Ra–H lengths were predicted to be 2.85 and 3.45 Å with broad envelopes in the ranges of 2.5–3.5 and 2.8–4.3 Å, respectively. The broad peaks shows that the first hydration shell of Ra2+ is much more flexible than those in the other hydrated divalent alkaline earth metal ions, i.e., Ra2+ is a structure-breaking ion. The hydration number of Ra2+ was predicted to be 8.1. From the angular distribution function (ADF), it was clarified that the octa hydrated Ra2+ ion has a flexible square antiprism structure at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ohtaki, H., Radnai, T.: Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157–1204 (1993)

    Article  CAS  Google Scholar 

  2. Park, J., Kolaski, M., Lee, H.M., Kim, K.S.: Insights into the structures, energetics, and vibrations of aqua-rubidium(I) complexes: ab initio study. J. Chem. Phys. 121, 3108–3116 (2004)

    Article  CAS  Google Scholar 

  3. Hofer, T.S., Randolf, B.R., Rode, B.M.: Structure-breaking effects of solvated Rb(I) in dilute aqueous solution: an ab initio QM/MM MD approach. J. Comput. Chem. 26, 949–956 (2005)

    Article  CAS  Google Scholar 

  4. Kolaski, M., Lee, H.M., Choi, Y.C., Kim, K.S., Tarakeshwar, P., Miller, D.J., Lisy, J.M.: Structures, energetics, and spectra of aqua-cesium(I) complexes: an ab initio and experimental study. J. Chem. Phys. 126, 074302 (2007)

    Article  Google Scholar 

  5. Schwenk, C.F., Hofer, T.S., Rode, B.M.: Structure breaking effect of hydrated Cs+. J. Phys. Chem. A 108, 1509–1514 (2004)

    Article  CAS  Google Scholar 

  6. Spohr, E., Palinkas, G., Heinzinger, K., Bopp, P., Probst, M.M.: Molecular dynamics study of an aqueous strontium chloride solution. J. Phys. Chem. 92, 6754–6761 (1988)

    Article  CAS  Google Scholar 

  7. Hofer, T.S., Randolf, B.R., Rode, B.M.: Sr(II) in water: a labile hydrate with a highly mobile structure. J. Phys. Chem. B 110, 20409–20417 (2006)

    Article  CAS  Google Scholar 

  8. Pfund, D.M., Darab, J.G., Fulton, J.L., Ma, Y.: An XAFS study of strontium ions and krypton in supercritical water. J. Phys. Chem. 98, 13102–13107 (1994)

    Article  CAS  Google Scholar 

  9. Ramos, S., Neilson, G.W., Barnes, A.C., Capitn, M.J.: Anomalous X-ray diffraction studies of Sr2+ hydration in aqueous solution. J. Chem. Phys. 118, 5542–5546 (2003)

    Article  CAS  Google Scholar 

  10. Hofer, T.S., Rode, B.M., Randolf, B.R.: Structure and dynamics of solvated Ba(II) in dilute aqueous solution: an ab initio QM/MM–MD approach. Chem. Phys. 312, 81–88 (2005)

    Article  CAS  Google Scholar 

  11. D’Angelo, P., Pavel, N.V., Roccatano, D., Nolting, H.F.: Multielectron excitations at the l edges of barium in aqueous solution. Phys. Rev. B 54, 12129–12138 (1996)

    Article  Google Scholar 

  12. Fujiwara, T., Mochizuki, Y., Komeiji, Y., Okiyama, Y., Mori, H., Nakano, T., Miyoshi, E.: Fragment molecular orbital-based molecular dynamics (FMO–MD) simulations on hydrated Zn(II) ion. Chem. Phys. Lett. 490, 41–45 (2010)

    Article  CAS  Google Scholar 

  13. Fujiwara, T., Mori, H., Mochizuki, Y., Tatewaki, H., Miyoshi, E.: Theoretical study of hydration models of trivalent rare-earth ions using model core potentials. J. Mol. Struct. 949, 28–35 (2010)

    Article  CAS  Google Scholar 

  14. Fujiwara, T., Mori, H., Mochizuki, Y., Osanai, Y., Miyoshi, E.: 4f-in-core model core potentials for trivalent lanthanides. Chem. Phys. Lett. 510, 261–266 (2011)

    Article  CAS  Google Scholar 

  15. Ayala, R., Martinez, J.M., Pappalardo, R.R., Munoz-Paez, A., Marcos, E.S.: Po(IV) hydration: a quantum chemical study. J. Phys. Chem. B 112, 5416–5422 (2008)

    Article  CAS  Google Scholar 

  16. Lutz, O.M.D., Hofer, T.S., Randolf, B.R., Weiss, A.K.H., Rode, B.M.: A qmcf–md investigation of the structure and dynamics of Ce4+ in aqueous solution. Inorg. Chem. 51, 6746–6752 (2012)

    Article  CAS  Google Scholar 

  17. Glendening, E.D., Feller, D.: Dicationwater interactions: m2+(H2O) n clusters for alkaline earth metals M = Mg, Ca, Sr, Ba, and Ra. J. Phys. Chem. 100, 4790–4797 (1996)

    Article  CAS  Google Scholar 

  18. Han, Y.K., Jeong, H.Y.: Comment on dication water interactions: M2+(H2O) n clusters for alkaline earth metals M = Mg, Ca, Sr, Ba, and Ra. J. Phys. Chem. 100, 18004–18005 (1996)

    Article  CAS  Google Scholar 

  19. Matsuda, A., Mori, H.: A quantum chemical study on hydration of Ra(II): comparison with the other hydrated divalent alkaline earth metal ions. J. Comp. Chem. Jpn. 14, 1–13 (2014)

    Google Scholar 

  20. Caminiti, R., Licheri, G., Piccaluga, G., Pinna, G.: X-ray diffraction study of a three-ion aqueous solution. Chem. Phys. Lett. 47, 275–278 (1977)

    Article  CAS  Google Scholar 

  21. Hewish, N.A., Enderby, J.E., Howells, W.S.: The dynamics of water molecules in ionic solution. J. Phys. C 16, 1777–1791 (1983)

    Article  CAS  Google Scholar 

  22. Matwiyoff, N.A., Taube, H.: Direct determination of the solvation number of magnesium(II) ion in water, aqueous acetone, and methanolic acetone solutions. J. Am. Chem. Soc. 90, 2796–2800 (1968)

    Article  CAS  Google Scholar 

  23. Tongraar, A., Rode, B.M.: The role of non-additive contributions on the hydration shell structure of Mg2+ studied by Born–Oppenheimer ab initio quantum mechanical/molecular mechanical molecular dynamics simulation. Chem. Phys. Lett. 346, 485–491 (2001)

    Article  CAS  Google Scholar 

  24. Tongraar, A., Liedl, K.R., Rode, B.M.: Solvation of Ca2+ in water studied by Born–Oppenheimer ab initio QM/MM dynamics. J. Phys. Chem. A 101, 6299–6309 (1997)

    Article  CAS  Google Scholar 

  25. Bernal-Uruchurtu, M.I., Ortega-Blake, I.: A refined Monte Carlo study of Mg2+ and Ca2+ hydration. J. Chem. Phys. 103, 1588–1598 (1995)

    Article  CAS  Google Scholar 

  26. Katz, A.K., Glusker, J.P., Beebe, S.A., Bock, C.W.: Calcium ion coordination: a comparison with that of beryllium, magnesium, and zinc. J. Am. Chem. Soc. 118, 5752–5763 (1996)

    Article  CAS  Google Scholar 

  27. Komeiji, Y., Uebayasi, M., Takata, R., Shimizu, A., Itsukashi, K., Taiji, M.: Fast and accurate molecular dynamics simulation of a protein using a special-purpose computer. J. Comput. Chem. 18, 1546–1563 (1997)

    Article  CAS  Google Scholar 

  28. Nakano, T., Kaminuma, T., Sato, T., Fukuzawa, K., Akiyama, Y., Uebayasi, M., Kitaura, K.: Fragment molecular orbital method: use of approximate electrostatic potential. Chem. Phys. Lett. 351, 475–480 (2002)

    Article  CAS  Google Scholar 

  29. Dill, J.D., Pople, J.A.: Selfconsistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron. J. Chem. Phys. 62, 2921–2923 (1975)

    Article  CAS  Google Scholar 

  30. Hehre, W.J., Ditchfield, R., Pople, J.A.: Selfconsistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972)

    Article  CAS  Google Scholar 

  31. Anjima, H., Tsukamoto, S., Mori, H., Mine, M., Klobukowski, M., Miyoshi, E.: Revised model core potentials of s-block elements. J. Comput. Chem. 28, 2424–2430 (2007)

    Article  CAS  Google Scholar 

  32. Miyoshi, E., Mori, H., Hirayama, R., Osanai, Y., Noro, T., Honda, H., Klobukowski, M.: Compact and efficient basis sets of s- and p-block elements for model core potential method. J. Chem. Phys. 122, 074104 (2005)

    Article  Google Scholar 

  33. Osanai, Y., Mon, M.S., Noro, T., Mori, H., Nakashima, H., Klobukowski, M., Miyoshi, E.: Revised model core potentials for first-row transition-metal atoms from Sc to Zn. Chem. Phys. Lett. 452, 210–214 (2008)

    Article  CAS  Google Scholar 

  34. Osanai, Y., Soejima, E., Noro, T., Mori, H., Mon, M.S., Klobukowski, M., Miyoshi, E.: Revised model core potentials for second-row transition metal atoms from Y to Cd. Chem. Phys. Lett. 463, 230–234 (2008)

    Article  CAS  Google Scholar 

  35. Mori, H., Ueno-Noto, K., Osanai, Y., Noro, T., Fujiwara, T., Klobukowski, M., Miyoshi, E.: Revised model core potentials for third-row transitionmetal atoms from Lu to Hg. Chem. Phys. Lett. 476, 317–322 (2009)

    Article  CAS  Google Scholar 

  36. Mori, H., Zeng, T., Klobukowski, M.: Assessment of chemical core potentials for the computation on enthalpies of formation of transition-metal complexes. Chem. Phys. Lett. 521, 150–156 (2012)

    Article  CAS  Google Scholar 

  37. Halgren, T.A.: Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Comput. Chem. 17, 616–641 (1996)

    Article  CAS  Google Scholar 

  38. MOE (the molecular operating environment) version 2009.10; software available from Chemical Computing Group, Inc.: 1010 Sherbrooke Street West, suite 910, Montreal, Canada H3A 2R7; http://www.chemcomp.com

  39. Komeiji Y., Mochizuki Y., Nakano T., Mori H., Chap. X: Recent advances in fragment molecular orbital-based molecular dynamics (FMO–MD) simulation in molecular dynamics. In: Wang, L. (ed.) Molecular dynamics—theoretical developments and Applications in Nanotechnology and Energy. Intech (2012); ISBN 979-953-307-615-6, www.intechopen.com

  40. Mori, H., Hirayama, N., Komeiji, Y., Mochizuki, Y.: Differences in hydration between cis- and trans-platin: quantum insights by ab initio fragment molecular orbital-based molecular dynamics (FMO–MD). Comp. Theor. Chem. 986, 30–34 (2012)

    Article  CAS  Google Scholar 

  41. Martyna, G.J., Klein, M.L., Tuckerman, M.: Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992)

    Article  Google Scholar 

  42. Hedström, H., Persson, I., Skarnemark, G., Ekberg, C.: Characterization of radium sulphate. J. Nucl. Chem., article number 940701 (2013)

Download references

Acknowledgments

This study was supported by JSPS KAKENHI Grant Number 25810002 and Yamada Science Foundation. AM is also grateful to JSPS for the Research Fellowships for Young Scientists. A part of the calculations reported here were performed using computing resources in the Research Center for Computational Science, Okazaki, Japan. The authors would thank Dr. Yuto Komeiji, and Prof. Yuji Mochizuki for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotoshi Mori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, A., Mori, H. Theoretical Study on the Hydration Structure of Divalent Radium Ion Using Fragment Molecular Orbital–Molecular Dynamics (FMO–MD) Simulation. J Solution Chem 43, 1669–1675 (2014). https://doi.org/10.1007/s10953-014-0235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0235-7

Keywords

Navigation