Skip to main content
Log in

Does the Like Dissolves Like Rule Hold for Fullerene and Ionic Liquids?

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Over 150 solvents have been probed to dissolve light fullerenes, but with a quite moderate success. We uncover unusual mutual polarizability of C60 fullerene and selected room-temperature ionic liquids, which can be applied in numerous applications, e.g. to significantly promote solubility/miscibility of the highly hydrophobic C60 molecule. We report electron density and molecular dynamics analysis supported by the state-of-the-art hybrid density functional theory and empirical simulations with a specifically refined potential. The analysis suggests the workability of the proposed scheme and opens a new direction to obtain well-dispersed fullerene containing systems. A range of common molecular solvents and novel ionic solvents are compared to 1-butyl-3-methylimidazolium tetrafluoroborate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F., Smalley, R.E.: C-60—buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  2. Yannoni, C.S., Hoinkis, M., Devries, M.S., Bethune, D.S., Salem, J.R., Crowder, M.S., Johnson, R.D.: Scandium clusters in fullerene cages. Science 256, 1191–1192 (1992)

    Article  CAS  Google Scholar 

  3. Theobald, J.A., Oxtoby, N.S., Phillips, M.A., Champness, N.R., Beton, P.H.: Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003)

    Article  CAS  Google Scholar 

  4. Mchedlov-Petrossyan, N.O.: Fullerenes in molecular liquids. Solutions in “good” solvents: another view. J. Mol. Liq. 161, 1–12 (2011)

    Article  CAS  Google Scholar 

  5. Bernardi, M., Lohrman, J., Kumar, P.V., Kirkeminde, A., Ferralis, N., Grossman, J.C., Ren, S.Q.: Nanocarbon-based photovoltaics. ACS Nano 6, 8896–8903 (2012)

    Article  CAS  Google Scholar 

  6. Schmidt-Hansberg, B., Sanyal, M., Klein, M.F.G., Pfaff, M., Schnabel, N., Jaiser, S., Vorobiev, A., Muller, E., Colsmann, A., Scharfer, P., Gerthsen, D., Lemmer, U., Barrena, E., Schabel, W.: Moving through the phase diagram: morphology formation in solution cast polymer–fullerene blend films for organic solar cells. ACS Nano 5, 8579–8590 (2011)

    Article  Google Scholar 

  7. Chamberlain, T.W., Popov, A.M., Knizhnik, A.A., Samoilov, G.E., Khlobystov, A.N.: The role of molecular clusters in the filling of carbon nanotubes. ACS Nano 4, 5203–5210 (2010)

    Article  CAS  Google Scholar 

  8. Corley, D.A., He, T., Tour, J.M.: Two-terminal molecular memories from solution-deposited C-60 films in vertical silicon nanogaps. ACS Nano 4, 1879–1888 (2010)

    Article  CAS  Google Scholar 

  9. Ruoff, R.S., Malhotra, R., Huestis, D.L., Tse, D.S., Lorents, D.C.: Anomalous solubility behavior of C60. Nature 362, 140–141 (1993)

    Article  CAS  Google Scholar 

  10. Chaban, V.V., Prezhdo, V.V., Prezhdo, O.V.: Covalent linking greatly enhances photoinduced electron transfer in fullerene–quantum dot nanocomposites: time-domain ab initio study. J. Phys. Chem. Lett. 4, 1–6 (2013)

    Article  CAS  Google Scholar 

  11. Semenov, K.N., Charykov, N.A.: Temperature dependence of solubility of individual light fullerenes and industrial fullerene mixture in 1-chloronaphthalene and 1-bromonaphthalene. J. Chem. Eng. Data 55, 2373–2378 (2010)

    Article  CAS  Google Scholar 

  12. Semenov, K.N., Charykov, N.A., Keskinov, V.A., Piartman, A.K., Blokhin, A.A., Kopyrin, A.A.: Solubility of light fullerenes in organic solvents. J. Chem. Eng. Data 55, 13–36 (2010)

    Article  CAS  Google Scholar 

  13. Scrivens, W.A., Tour, J.M.: Potent solvents for C-60 and their utility for the rapid acquisition of C-13 nmr data for fullerenes. J. Chem. Soc. Chem. Commun. 15, 1207–1209 (1993)

    Article  Google Scholar 

  14. Talukdar, S., Pradhan, P., Banerji, A.: Electron donor-acceptor interactions of C-60 with n- and pi-donors: a rational approach towards its solubility. Fuller. Sci. Technol. 5, 547–557 (1997)

    Article  CAS  Google Scholar 

  15. Lozano, K., Chibante, L.P.F., Sheng, X.Y., Gaspar-Rosas, A., Barrera, E.V.: Physical examination and handling of wet and dry C60. In: Battle, T.P., Henein, H. (eds.) Processing and Handling of Powders and Dusts. Minerals, Metals, and Materials Society, Mexico (1997)

    Google Scholar 

  16. Pourbasheer, E., Riahi, S., Ganjali, M.R., Norouzi, P.: Prediction of solubility of fullerene C-60 in various organic solvents by genetic algorithm-multiple linear regression. Fuller. Nanotub. Carb. Nanostruct. 19, 585–598 (2011)

    Article  CAS  Google Scholar 

  17. Furuishi, T., Ohmachi, Y., Fukami, T., Nagase, H., Suzuki, T., Endo, T., Ueda, H., Tomono, K.: Enhanced solubility of fullerene (C(60)) in water by inclusion complexation with cyclomaltononaose (delta-CD) using a cogrinding method. J. Incl. Phenom. Macrocycl. Chem. 67, 233–239 (2010)

    Article  CAS  Google Scholar 

  18. Troshin, P.A., Susarova, D.K., Khakina, E.A., Goryachev, A.A., Borshchev, O.V., Ponomarenko, S.A., Razumov, V.F., Sariciftci, N.S.: Material solubility and molecular compatibility effects in the design of fullerene/polymer composites for organic bulk heterojunction solar cells. J. Mater. Chem. 22, 18433–18441 (2012)

    Article  CAS  Google Scholar 

  19. Monticelli, L.: On atomistic and coarse-grained models for C-60 fullerene. J. Chem. Theory Comput. 8, 1370–1378 (2012)

    Article  CAS  Google Scholar 

  20. Qian, H.J., van Duin, A.C.T., Morokuma, K., Irle, S.: Reactive molecular dynamics simulation of fullerene combustion synthesis: Reaxff versus DFTB potentials. J. Chem. Theory Comput. 7, 2040–2048 (2011)

    Article  CAS  Google Scholar 

  21. Qiao, R., Roberts, A.P., Mount, A.S., Klaine, S.J., Ke, P.C.: Translocation of C-60 and its derivatives across a lipid bilayer. Nano Lett. 7, 614–619 (2007)

    Article  CAS  Google Scholar 

  22. Chiu, C.C., DeVane, R., Klein, M.L., Shinoda, W., Moore, P.B., Nielsen, S.O.: Coarse-grained potential models for phenyl-based molecules: II. Application to fullerenes. J. Phys. Chem. B 114, 6394–6400 (2010)

    Article  CAS  Google Scholar 

  23. Monticelli, L., Salonen, E., Ke, P.C., Vattulainen, I.: Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter 5, 4433–4445 (2009)

    Article  CAS  Google Scholar 

  24. Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.J.: The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008)

    Article  CAS  Google Scholar 

  25. Maciel, C., Fileti, E.E., Rivelino, R.: Assessing the solvation mechanism of C-60(OH)(24) in aqueous solution. Chem. Phys. Lett. 507, 244–247 (2011)

    Article  CAS  Google Scholar 

  26. Colherinhas, G., Fonseca, T.L., Fileti, E.E.: Theoretical analysis of the hydration of C-60 in normal and supercritical conditions. Carbon 49, 187–192 (2011)

    Article  CAS  Google Scholar 

  27. Malaspina, T., Fileti, E.E., Rivelino, R.: Structure and UV-Vis spectrum of C-60 fullerene in ethanol: a sequential molecular dynamics/quantum mechanics study. J. Phys. Chem. B 111, 11935–11939 (2007)

    Article  CAS  Google Scholar 

  28. Wong-Ekkabut, J., Baoukina, S., Triampo, W., Tang, I.M., Tieleman, D.P., Monticelli, L.: Computer simulation study of fullerene translocation through lipid membranes. Nat. Nanotechnol. 3, 363–368 (2008)

    Article  CAS  Google Scholar 

  29. Lopez, V., Roman-Perez, G., Arregui, A., Mateo-Marti, E., Banares, L., Martin-Gago, J.A., Soler, J.M., Gomez-Herrero, J., Zamora, F.: Azafullerene-like nanosized clusters. ACS Nano 3, 3352–3357 (2009)

    Article  CAS  Google Scholar 

  30. Ge, L., Jefferson, J.H., Montanari, B., Harrison, N.M., Pettifor, D.G., Briggs, G.A.D.: Effects of doping on electronic structure and correlations in carbon peapods. ACS Nano 3, 1069–1076 (2009)

    Article  CAS  Google Scholar 

  31. Shukla, M.K., Dubey, M., Leszczynski, J.: Theoretical investigation of electronic structures and propertiesof C-60-gold nanocontacts. ACS Nano 2, 227–234 (2008)

    Article  CAS  Google Scholar 

  32. Zheng, G.S., Irle, S., Elstner, M., Morokuma, K.: Quantum chemical molecular dynamics model study of fullerene formation from open-ended carbon nanotubes. J. Phys. Chem. A 108, 3182–3194 (2004)

    Article  CAS  Google Scholar 

  33. Lopes, J.N.C., Padua, A.A.H.: CL&P: a generic and systematic force field for ionic liquids modeling. Theor. Chem. Acc. 131, 1129 (2012)

    Article  Google Scholar 

  34. Tariq, M., Freire, M.G., Saramago, B., Coutinho, J.A.P., Lopes, J.N.C., Rebelo, L.P.N.: Surface tension of ionic liquids and ionic liquid solutions. Chem. Soc. Rev. 41, 829–868 (2012)

    Article  CAS  Google Scholar 

  35. Chaban, V.V., Voroshylova, I.V., Kalugin, O.N.: A new force field model for the simulation of transport properties of imidazolium-based ionic liquids. Phys. Chem. Chem. Phys. 13, 7910–7920 (2011)

    Article  CAS  Google Scholar 

  36. Chaban, V.: Polarizability versus mobility: atomistic force field for ionic liquids. Phys. Chem. Chem. Phys. 13, 16055–16062 (2011)

    Article  CAS  Google Scholar 

  37. Chaban, V.V., Prezhdo, O.V.: A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures. Phys. Chem. Chem. Phys. 13, 19345–19354 (2011)

    Article  CAS  Google Scholar 

  38. Perpete, E.A., Champagne, B., Kirtman, B.: Large vibrational nonlinear optical properties of C-60: a combined Hartree–Fock/density-functional approach. Phys. Rev. B 61, 13137–13143 (2000)

    Article  CAS  Google Scholar 

  39. Chai, J.D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  CAS  Google Scholar 

  40. Davidson, E.R.: Comment on Dunning’s correlation-consistent basis sets—comment. Chem. Phys. Lett. 260, 514–518 (1996)

    Article  CAS  Google Scholar 

  41. Rivelino, R., Maniero, A.M., Prudente, F.V., Costa, L.S.: Theoretical calculations of the structure and UV–Vis absorption spectra of hydrated C-60 fullerene. Carbon 44, 2925–2930 (2006)

    Article  CAS  Google Scholar 

  42. Maciel, C., Fileti, E.E.: Molecular interactions between fullerene C-60 and ionic liquids. Chem. Phys. Lett. 568, 75–79 (2013)

    Article  Google Scholar 

  43. Sawada, H., Kasai, R.: Solubilization of fullerene into ionic liquids by the use of fluoroalkyl end-capped oligomers. Polym. Adv. Technol. 16, 655–658 (2005)

    Article  CAS  Google Scholar 

  44. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)

    Article  Google Scholar 

  45. Parrinello, M., Rahman, A.: Polymorphic transitions in single-crystals—a new molecular-dynamics method. J. Appl. Phys. 52, 7182–7190 (1981)

    Article  CAS  Google Scholar 

  46. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)

    Article  CAS  Google Scholar 

  47. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald—an N. Log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)

    Article  CAS  Google Scholar 

  48. van der Spoel, D., Hess, B.: GROMACS-the road ahead. Wiley Interdiscip. Rev. 1, 710–715 (2011)

    Google Scholar 

  49. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  Google Scholar 

  50. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005)

    Article  Google Scholar 

  51. Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001)

    CAS  Google Scholar 

  52. Martins, S., Fedorov, A., Afonso, C.A.M., Baleizao, C., Berberan-Santos, M.N.: Fluorescence of fullerene C-70 in ionic liquids. Chem. Phys. Lett. 497, 43–47 (2010)

    Article  CAS  Google Scholar 

  53. Wang, J.Y., Chu, H.B., Li, Y.: Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS Nano 2, 2540–2546 (2008)

    Article  CAS  Google Scholar 

  54. Hantal, G., Voroshylova, I., Cordeiro, M.N.D.S., Jorge, M.: A systematic molecular simulation study of ionic liquid surfaces using intrinsic analysis methods. Phys. Chem. Chem. Phys. 14, 5200–5213 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The computations have been partially supported by the Danish Center for Scientific Computing (Horseshoe 5). C. M. and E. E. F. thank Brazilian agencies FAPESP and CNPq for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly V. Chaban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaban, V.V., Maciel, C. & Fileti, E.E. Does the Like Dissolves Like Rule Hold for Fullerene and Ionic Liquids?. J Solution Chem 43, 1019–1031 (2014). https://doi.org/10.1007/s10953-014-0155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0155-6

Keywords

Navigation