Skip to main content
Log in

Chlorine Dioxide–Iodide–Methyl Acetoacetate Oscillation Reaction Investigated by UV–Vis and an Online FTIR Spectrophotometric Method

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide–iodide ion–methyl acetoacetate reaction system, a series of experiments were done by using UV–vis and an online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, sulfuric acid, and the pH have great influences on the oscillations observed at the wavelength 350 nm. There is a pre-oscillatory or induction period, and the amplitude and number of oscillations are dependent on the initial concentration of the reactants. Equations were obtained for the variation of the triiodide ion reaction rate with the reaction time and the initial concentrations in the oscillation stage. The oscillation reaction was accelerated by increasing the temperature. The apparent activation energies for the induction period and the oscillation period are 55.65 and 33.00 kJ·mol−1, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism is proposed for the oscillation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Field, R.J., Noyes, R.M., Koros, E.: Oscillation in chemical system II. Through analysis of temporal oscillation in the bromate–cerium–malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)

    Article  CAS  Google Scholar 

  2. Field, R.J., Noyes, R.M.: Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)

    Article  CAS  Google Scholar 

  3. De Kepper, P., Boissonade, J., Epstein, I.R.: Chlorite–iodide reaction: a versatile system for the study of nonlinear dynamical behavior. J. Phys. Chem. 94, 6525–6536 (1990)

    Article  Google Scholar 

  4. Bray, W.C.: Beitrage zur Kenntnis der Halogensauerstuff verbindungen. Abhandlung III. Zur Kenntnis des Chlordioxyds. Z. Phys. Chem. 54, 575–581 (1906)

    Google Scholar 

  5. Fukutomi, H., Gordon, G.: Kinetic study of the reaction between chlorine dioxide and potassium iodide in aqueous solution. J. Am. Chem. Soc. 89, 1362–1366 (1967)

    Article  CAS  Google Scholar 

  6. Indelli, A.: Kinetic study on the reaction of sodium chlorite with potassium iodide. J. Phys. Chem. 68, 3027–3031 (1964)

    Article  CAS  Google Scholar 

  7. Dolnik, M., Epstein, I.R.: Excitability and bursting in the chlorine dioxide–iodide reaction in a forced open system. J. Chem. Phys. 97, 3265–3273 (1992)

    Article  CAS  Google Scholar 

  8. Dolnik, M., Epstein, I.R.: A coupled chemical burster: the chlorine dioxide–iodide reaction in two flow reactors. J. Chem. Phys. 98, 1149–1155 (1993)

    Article  CAS  Google Scholar 

  9. De Kepper, P., Epstein, I.R., Kustin, K., Orbán, M.: Batch oscillations and spatial wave patterns in chlorite oscillating systems. J. Phys. Chem. 86, 170–171 (1982)

    Article  Google Scholar 

  10. De Kepper, P., Epstein, I.R.: A mechanistic study of oscillations and bistability in the Briggs–Rauscher reaction. J. Am. Chem. Soc. 104, 49–55 (1982)

    Article  Google Scholar 

  11. Lengyel, I., Rábai, G., Epstein, I.R.: Batch oscillation in the reaction of chlorine dioxide with iodine and malonic acid. J. Am. Chem. Soc. 112, 4606–4607 (1990)

    Article  CAS  Google Scholar 

  12. Lengyel, I., Rábai, G., Epstein, I.R.: Experimental and modeling study of oscillations in the chlorine dioxide–iodine–malonic acid reaction. J. Am. Chem. Soc. 112, 9104–9110 (1990)

    Article  CAS  Google Scholar 

  13. Lengyel, I., Li, J., Kustin, K., Epstein, I.R.: Rate constants for reactions between iodine- and chlorine-containing species: a detailed mechanism of the chlorine dioxide/chlorite–iodide reaction. J. Am. Chem. Soc. 118, 3708–3719 (1996)

    Article  CAS  Google Scholar 

  14. Lengyel, I., Epstein, I.R.: Modeling of Turing structures in the chlorite–iodide–malonic acid–starch reaction system. Science 251(4994), 650–652 (1991)

    Article  CAS  Google Scholar 

  15. Lengyel, I., Kadar, S., Epstein, I.R.: Transient Turing structures in a gradient-free closed system. Science 259(5094), 493–495 (1993)

    Article  CAS  Google Scholar 

  16. Munuzuri, A.P., Dolnik, M., Zhabotinsky, A.M., Epstein, I.R.: Control of the chlorine dioxide–iodine–malonic acid oscillating reaction by illumination. J. Am. Chem. Soc. 121, 8065–8069 (1999)

    Article  CAS  Google Scholar 

  17. Fabian, I., Gordon, G.: The kinetics and mechanism of the chlorine dioxide–iodide ion reaction. Inorg. Chem. 36, 2494–2497 (1997)

    Article  CAS  Google Scholar 

  18. Strier, D.E., De Kepper, P., Boissonade, J.: Turing patterns, spatial bistability, and front interactions in the [ClO2, I2, I, CH2(COOH)2] reaction. J. Phys. Chem. A 109, 1357–1363 (2005)

    Article  CAS  Google Scholar 

  19. Szalai, I., De Kepper, P.: Turing patterns, spatial bistability, and front instabilities in a reaction–diffusion system. J. Phys. Chem. A 108, 5315–5321 (2004)

    Article  CAS  Google Scholar 

  20. Riaz, S.S., Ray, D.S.: Spiral pattern in chlorite–iodide–malonic acid reaction: a theoretical and numerical study. J. Phys. Chem. 123, 174506.1–174506.5 (2005)

    Google Scholar 

  21. Long, D.A., Chodroff, L., O’Neal, T.M., Hemkin, S.: A true chemical clock: serially coupled chlorite–iodide oscillators. Chem. Phys. Lett. 447, 340–344 (2005)

    Article  Google Scholar 

  22. Shi, L., Li, W., Wang, F.: Experimental study of a closed system in the chlorine dioxide–iodine–malonic acid–sulfuric acid oscillation reaction by UV–vis spectrophotometric method. J. Solut. Chem. 38, 571–588 (2009)

    Article  CAS  Google Scholar 

  23. Yan, C., Shi, L., Guo, F.: Experimental study of a closed system in the sodium chlorite–iodine–ethyl acetoacetate oscillation reaction by UV–Vis and online FTIR spectrophotometric method. Res. Chem. Intermed. 37, 929–947 (2011)

    Article  CAS  Google Scholar 

  24. Guo, F., Shi, L., Wang, L.: Experimental study of closed system in the chlorine dioxide–iodine–ethyl acetoacetate–sulfuric acid oscillation reaction by UV–vis spectrophotometric methods. J. Solut. Chem. 40, 587–607 (2011)

    Article  Google Scholar 

  25. Li, N., Shi, L., Wang, X., Guo, F., Yan, C.: Experimental study of closed system in the chlorine dioxide–iodide–sulfuric acid reaction by UV–vis spectrophotometric method. Int. J. Anal. Chem. 2011, Article ID 130102 (2011)

  26. Wyman, D.P., Kaufman, P.R., Freeman, W.R.: The chlorination of active hydrogen compounds with sulfuryl chloride. II. Esters, nitriles, nitro compounds, and aldehydes. J. Org. Chem. 29, 2706–2710 (1964)

    Article  CAS  Google Scholar 

  27. Cieciuch, R.F.W., Westheimer, F.W.: Halide catalysis in the bromination of deoxybenzoin. J. Am. Chem. Soc. 85, 2591–2595 (1963)

    Article  CAS  Google Scholar 

  28. Epstein, I.R., Kustin, K.: A mechanism for dynamical behavior in the oscillatory chlorite–iodide reaction. J. Phys. Chem. 89, 2275–2282 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from the Shandong Provincial Natural Science Foundation (Nos. ZR2009BM007 and 2013ZRE27069), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laishun Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Li, N., Liu, J. et al. Chlorine Dioxide–Iodide–Methyl Acetoacetate Oscillation Reaction Investigated by UV–Vis and an Online FTIR Spectrophotometric Method. J Solution Chem 42, 60–79 (2013). https://doi.org/10.1007/s10953-013-9955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-9955-3

Keywords

Navigation