Skip to main content
Log in

A XANES and EXAFS Study of Hydration and Ion Pairing in Ambient Aqueous MnBr2 Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies were used to probe the first-shell coordination structure of Mn(II) in aqueous MnBr2 solutions at ambient conditions from very dilute to the near saturation limit. The Mn K-edge EXAFS spectra for 0.05 and 0.2 m solutions showed that there was no Br(−I) in the first shell, and that the Mn(II) was fully hydrated with six water molecules in an octahedral arrangement. In contrast, for 6 m solution, the coordination number of water was reduced to about 5, and an average of about one bromine atom was present in the first shell as a contact ion pair. The 1s → 4p transition at 6545.5 eV confirmed the observation of Mn–Br contact ion pairs at high concentrations and the 1s → 3d transition at 6539.5 eV showed that the first shell coordination symmetry remained octahedral even in the presence of Mn–Br ion pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Anschutz, G. Blanc, and P. Stille, Geochim. Cosmochim. Acta 59, 4799 (1995).

    Article  Google Scholar 

  2. R. A. Hodkinson, P. Stoffers, J. Scholten, D. S. Cronan, G. Jeschke, and T. D. S. Rogers, Geochim. Cosmochim. Acta 58, 5011 (1994).

    Article  Google Scholar 

  3. T. Kuhn, B. C. Bostick, A. Koschinsky, P. Halbach, and S. Fendorf, Chem. Geol. 199, 29 (2003).

    Google Scholar 

  4. a) P. A. Hamley, T. Ilkenhans, J. M. Webster, E. Garcia-Verdugo, E. Venardou, M. J. Clarke, R. Auerbach, W. B. Thomas, K. Whiston, and M. Poliakoff, Green Chem. 4, 235 (2002); b) J. B. Dunn, D. I. Urquhart, and P. E. Savage, Adv. Synth. Catal. 344, 385 (2002).

  5. E. Garcia-Verdugo, E. Venardou, W. B. Thomas, K. Whiston, W. Partenheimer, P. A. Hamley, and M. Poliakoff, Adv. Synth. Catal. 346, 307 (2004).

    Article  Google Scholar 

  6. G. W. Neilson, J. R. Newsome, and M. Sandstrom, J. Chem. Soc., Faraday Trans. II 77, 1245 (1981).

    Google Scholar 

  7. B. Beagley, B. Gahan, G. N. Greaves, and C. A. McAuliffe, J. Chem. Soc., Chem. Commun. 1265 (1983).

  8. B. Beagley, B. Gahan, G. N. Greaves, C. A. McAuliffe, and E. W. White, J. Chem. Soc., Chem. Commun. 1804 (1985).

  9. B. Beagley, C. A. McAuliffe, S. P. B. Smith, and E. W. White, J. Phys.: Condens. Matter 3, 7919 (1991).

    Article  Google Scholar 

  10. Y. Tajiri, M. Ichihashi, T. Mibuchi, and H. Wakita, Bull. Chem. Soc. Jpn. 59, 1155 (1986).

    Google Scholar 

  11. H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).

    Article  Google Scholar 

  12. K. Ozutsumi, Y. Abe, R. Takahashi, and S.-I. Ishiguro, J. Phys. Chem. 98, 9894 (1994).

    Article  Google Scholar 

  13. Y. Inada, T. Sugata, K. Ozutsumi, and S. Funahashi, Inorg. Chem. 37, 1886 (1998).

    Article  Google Scholar 

  14. K. Waizumi, T. Kouda, A. Tanio, N. Fukushima, and H. Ohtaki, J. Solution Chem. 28, 84 (1999).

    Article  Google Scholar 

  15. R. A. Mayanovic, S. Jayanetti, A. J. Anderson, W. A. Bassett, and I. M. Chou, J. Chem. Phys. 118, 719 (2003).

    Article  Google Scholar 

  16. L. X. Chen, L. M. Utschig, S. L. Schlesselman, and D. M. Tiede, J. Phys. Chem. B 108, 3912 (2004).

    Article  Google Scholar 

  17. Y. Inada, H. Hayashi, K. Sugimoto, and S. Funahashi, J. Phys. Chem. A 103, 1401 (1999).

    Article  Google Scholar 

  18. P. D'Angelo, V. Barone, G. Chillemi, N. Sanna, W. Meyer-Klaucke, and N. V. Pavel, J. Am. Chem. Soc. 124, 1958 (2002).

    Article  PubMed  Google Scholar 

  19. T. Akai, M. Okuda, and M. Nomura, Bull. Chem. Soc. Jpn. 72, 1239 (1999).

    Article  Google Scholar 

  20. R. J. Reeder, G. M. Lamble, and P. A. Northrup, Am. Mineral. 84, 1049 (1999).

    Google Scholar 

  21. M. M. Hoffmann, J. G. Darab, B. J. Palmer, and J. L. Fulton, J. Phys. Chem. A 103, 8471 (1999).

    Article  Google Scholar 

  22. S. L. Wallen, B. J. Palmer, and J. L. Fulton, J. Chem. Phys. 108, 4039 (1998).

    Article  Google Scholar 

  23. E. J. Elzinga and R. J. Reeder, Geochim. Cosmochim. Acta 66, 3943 (2002).

    Article  Google Scholar 

  24. A. I. Frenkel and G. V. Korshin, Can. J. Soil Sci. 81, 271 (2001).

    Google Scholar 

  25. J. L. Fulton, M. M. Hoffmann, J. G. Darab, B. J. Palmer, and E. A. Stern, J. Phys. Chem. A 104, 11651 (2000).

    Article  Google Scholar 

  26. P. D'Angelo, E. Bottari, M. R. Festa, H. F. Nolting, and N. V. Pavel, J. Chem. Phys. 107, 2807 (1997).

    Article  Google Scholar 

  27. K. Zhang, L. Song, J. Dong, and M. A. ElSayed, Biophys. J. 73, 2097 (1997).

    PubMed  Google Scholar 

  28. J. L. Fulton, M. M. Hoffmann, and J. G. Darab, Chem. Phys. Lett. 330, 300 (2000).

    Article  Google Scholar 

  29. J. L. Fulton, S. M. Heald, Y. S. Badyal, and J. M. Simonson, J. Phys. Chem. A 107, 4688 (2003).

    Article  Google Scholar 

  30. S. M. Heald, in X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, D. C. Koningsberger and R. Prins, eds. (Wiley, New York, 1988), pp. 97–118.

    Google Scholar 

  31. B. K. Teo, EXAFS: Basic Principles and Data Analysis, (Springer-Verlag, New York, 1986).

    Google Scholar 

  32. E. A. Stern and S. M. Heald, Handbook of Synchrontron Radiation, D. E. Eastman, Y. Farge, and E. E. Koch, eds. (North-Holland: Amsterdam, 1983).

    Google Scholar 

  33. E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Physica B 209, 117 (1995).

    Article  Google Scholar 

  34. M. Newville, P. Livins, Y. Yacoby, J. J. Rehr, and E. A. Stern, Phys. Rev. B 47, 14126 (1993).

    Article  Google Scholar 

  35. S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, Phys. Rev. B 52, 2995 (1995).

    Article  Google Scholar 

  36. M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, Physica B 209, 154 (1995).

    Article  Google Scholar 

  37. M. Kuriyama and S. Hosoya, Bull. Chem. Soc. Jpn. 17, 1022 (1962).

    Google Scholar 

  38. E. F. Bertaut, D. Tran Qui, P. Burlet, P. Burlet, M. Thomas, and J. M. Moreau, Acta Crystallogr., Sect. B 30, 2234 (1974).

    Google Scholar 

  39. D. Tranqui, P. Burlet, A. Filhol, and M. Thomas, Acta Crystallogr., Sect. B 33, 1357 (1977).

    Google Scholar 

  40. K. Sudarsanan, Acta Crystallogr., Sect. B 31, 2720 (1975).

    Google Scholar 

  41. E. D. Crozier, N. Alberding, and B. R. Sundheim, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 39, 808 (1983).

    Google Scholar 

  42. M. Schneider, P. Kuske, and H. D. Lutz, Acta Crystallogr., Sect. B: Struct. Sci. 48, 761 (1992).

    Google Scholar 

  43. H. Montgomery, R. V. Chastain, and E. C. Lingafelter, Acta Crystallogr. 20, 731 (1966).

    Article  Google Scholar 

  44. A. Zalkin, J. D. Forrester, and D. H. Templeton, Inorg. Chem. 3, 529 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Fulton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Fulton, J.L. & Partenheimer, W. A XANES and EXAFS Study of Hydration and Ion Pairing in Ambient Aqueous MnBr2 Solutions. J Solution Chem 34, 993–1007 (2005). https://doi.org/10.1007/s10953-005-6986-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-6986-4

Keywords

Navigation