Skip to main content
Log in

Chromium(III) Hydroxide Solubility in The Aqueous Na+-OH-H2PO4-HPO2−4-PO3−4-H2O System: A Thermodynamic Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Chromium(III)-phosphate reactions are expected to be important in managing high-level radioactive wastes stored in tanks at many DOE sites. Extensive studies on the solubility of amorphous Cr(III) solids in a wide range of pH (2.8–14) and phosphate concentrations (10−4 to 1.0 m) at room temperature (22±2)°C were carried out to obtain reliable thermodynamic data for important Cr(III)-phosphate reactions. A combination of techniques (XRD, XANES, EXAFS, Raman spectroscopy, total chemical composition, and thermodynamic analyses of solubility data) was used to characterize solid and aqueous species. Contrary to the data recently reported in the literature,(1) only a limited number of aqueous species [Cr(OH)3H2PO4, Cr(OH)3(H2PO4)2−2), and Cr(OH)3HPO2−4] with up to about four orders of magnitude lower values for the formation constants of these species are required to explain Cr(III)-phosphate reactions in a wide range of pH and phosphate concentrations. The log Ko values of reactions involving these species [Cr(OH)3(aq)+H2PO4⇌Cr(OH)3H2PO4; Cr(OH)3(aq)+2H2PO4⇌Cr(OH)3(H2PO4)2−2; Cr(OH)3(aq)+HPO2−4⇌Cr(OH)3HPO2−4] were found to be 2.78±0.3, 3.48±0.3, and 1.97±0.3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, J. Solution Chem. 27,33–66 (1998).

    Google Scholar 

  • P. Hrma, J. Vienna, J. Crum, G. Piepel, and M. Mika, Mat. Res. Soc. Proc. 608,671–676 (2000).

    Google Scholar 

  • J. L. Swanson, Clean Option: An Alternative Strategy for Hanford Tank Waste Remediation. Vol. 2: Detailed Description of First Example Flowsheet. PNL-8288 (Pacific Northwest National Laboratory, Richland, WA, 1993).

    Google Scholar 

  • M. J. Kupfer, A. L. Boldt, K. M. Hodgson, L. W. Shelton, B. C. Simpson, R. A. Watrous, B. A. Higley, R. M. Orme, M. D. LeClair, G. L. Borsheim, R. T. Winward, N. G. Colton, S. L. Lambert, D. E. Place, and W. W. Schultz, Standard Inventories of Chemicals and Radionuclides in Hanford Site Tanks. HNF-SD-WM-TI-740 (Lockheed Martin Hanford Company, Richland, WA, 1998).

    Google Scholar 

  • J. D. Anderson, A History of the 200 Area Tank Farms. WHC-MR0132 (Westinghouse Hanford Company, Richland, WA, 1990).

    Google Scholar 

  • D. Rai, N. J. Hess, L. Rao, Z. Zhang, A. R. Felmy, D. A. Moore, S. B. Clark, and G. Lumetta, J. Solution Chem. 31,343–367 (2002).

    Google Scholar 

  • F. G. Zharovskii, Trudy Kowissii Analit. Khim. Akad. Nau k. SSSR 3, 101 (1951). (quoted by L. G. Sillen and A. E. Martell, Stability Constants of Metal-Ion Complexes. Special Publication No. 17. The Chemical Society, London)

  • S. C. Lahiri and S. Aditya, J. Indian Chem. Soc. 43,513–517 (1966).

    Google Scholar 

  • A. E. Aleshechkina, V. M. Masalovich, P. K. Agasyan, and B. P. Sereda, Russ. J. Inorg. Chem. 21,973–975 (1976).

    Google Scholar 

  • D. Rai, B. M. Sass, and D. A. Moore, Inorg. Chem. 26,345–349 (1987).

    Google Scholar 

  • S. M. Sterner, A. R. Felmy, J. R. Rustad, and K. S. Pitzer, Thermodynamic Analysis of Aqueous Solutions Using INSIGHT. PNWD-SA-4436 (Pacific Northwest National Laboratory, Richland, WA, 1997).

    Google Scholar 

  • R. C. Weast, Handbook of Chemistry and Physics, 53rd edn. (The Chemical Rubber Co., Cleveland, OH, 1972).

    Google Scholar 

  • D. Rai, N. J. Hess, A. R. Felmy, D. A. Moore, M. Yui, and P. Vitorge, Radiochim. Acta 86,89–99 (1999).

    Google Scholar 

  • K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77,2300–2308 (1973).

    Google Scholar 

  • K. S. Pitzer, Ion Interaction Approach: Theory and Data Correlation, Chap. 3 (CRC Press, Boca Ratan, FL, 1991).

  • A. R. Felmy, D. Rai, J. A. Schramke, and J. L. Ryan, Radiochim. Acta 48,29–35 (1989).

    Google Scholar 

  • D. Rai, A. R. Felmy, and R. W. Szelmeczka, J. Solution Chem. 20,375–390 (1991).

    Google Scholar 

  • D. Rai, A. R. Felmy, S. M. Sterner, D. A. Moore, M. J. Mason, and C. F. Novak, Radiochim. Acta 79,239–247 (1997).

    Google Scholar 

  • D. Rai, Y. Xia, N. J. Hess, D. M. Strachan, and B. P. McGrail, J. Solution Chem. 30,949–967 (2001).

    Google Scholar 

  • I. R. Beattie and T. R. Gilson, J. Chem. Soc. A. 980,(1970).

  • G. M. Begun, G. W. Beall, L. A. Boatner, and W. J. Gregor, J. Raman Spectrosc. 11,273 (1981).

    Google Scholar 

  • K. S. Pitzer and L. F. Silvester, J. Solution Chem. 5,(1976).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanpat Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, D., Moore, D.A., Hess, N.J. et al. Chromium(III) Hydroxide Solubility in The Aqueous Na+-OH-H2PO4-HPO2−4-PO3−4-H2O System: A Thermodynamic Model. J Solution Chem 33, 1213–1242 (2004). https://doi.org/10.1007/s10953-004-7137-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-004-7137-z

Navigation