Aizenshtat, V. S. (1963). Multi-operator cyclic processes. *Doklady Akademii Nauk BSSR*, *7*(4), 224–227 (in Russian).

Al-Anzi, F., Sotskov, Yu. N., Allahverdi, A., & Andreev, G. (2006). Using mixed graph coloring to minimize total completion time in job shop scheduling. *Mathematics of Computation*, *182*, 1137–1148.

Alyushkevich, V. B., & Sotskov, Yu. N. (1989). Stability in the problems of production planning. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *3*, 102–107 (in Russian).

Baker, K. R. (1974). *Introduction to sequencing and scheduling*. New York: Wiley.

Baker, K. R., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1983). Preemptive scheduling of a single machine to minimize maximum cost subject to release dates and precedence constraints. *Operations Research*, *31*(2), 381–386.

Barkan, S. A., & Tanaev, V. S. (1970). On constructing class schedules. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *1*, 76–81 (in Russian).

Blazewicz, J. (1976). Scheduling dependent tasks with different arrival times to meet deadlines. In E. Gelenbe & H. Beilner (Eds.), *Modelling and Performance Evaluation of Computer Systems* (pp. 57–65). Amsterdam: North Holland.

Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). *Handbook on scheduling*. Berlin: Springer.

Blokh, A. S., & Tanaev, V. S. (1966). Multioperator processes. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *2*, 5–11 (in Russian).

Brucker, P., Knust, S., Cheng, T. C. E., & Shakhlevich, N. V. (2004). Complexity results for flow-shop and open-shop scheduling problems with transportation delays. *Annals of Operations Research*, *129*(1–4), 81–106.

Christofides, N., & Beasley, J. E. (1984). Period routing problem. *Networks*, *14*(2), 237–256.

Coffman, E. G., & Graham, R. L. (1972). Optimal scheduling for two-processor systems. *Acta Informatica*, *1*(3), 200–213.

Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967). *Theory of scheduling*. Reading: Addison-Wesley.

Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. *Operations Research*, *8*(1), 101–112.

Dantzig, G. B., Blattner, W., & Rao, M. R. (1967). Finding a cycle in a graph with minimum cost to time ratio with application to a ship routing problem. In P. Rosenstiehl (Ed.), *Theory of graphs* (pp. 77–84). Paris/New York: Dunod/Gordon & Breach.

Dawande, M., Geismer, H. N., Sethi, S. P., & Sriskandarajah, C. (2005). Sequencing and scheduling in robotic cells: Recent developments. *Journal of Scheduling*, *8*(5), 387–426.

Dilworth, R. P. (1950). A decomposition for partially ordered sets. *Annals of Mathematics*, *51*, 161–166.

Dolgui, A., Levin, G., & Louly, M. A. (2005). Decomposition approach for a problem of lot-sizing and sequencing under uncertainties. *International Journal of Computer Integrated Manufacturing*, *18*(5), 376–385.

Dolgui, A., Finel, B., Guschinskaya, O., Guschinsky, N., Levin, G., & Vernadat, F. (2006a). Balancing large-scale machining lines with multi-spindle heads using decomposition. *International Journal of Production Research*, *44*(18–19), 4105–4120.

Dolgui, A., Guschinsky, N., & Levin, G. (2006b). A decomposition method for transfer line life cycle cost optimization. *Journal of Mathematical Modeling and Algorithms*, *5*, 215–238.

Dolgui, A., Guschinsky, N., & Levin, G. (2007). Optimisation of power transmission systems using a multilevel decomposition approach. *RAIRO–Operations Research*, *41*, 213–229.

Dolgui, A., Guschinskaya, O., Guschinsky, N., & Levin, G. (2008a). Decision making and support tools for design of machining systems. In F. Adam & P. Humphreys (Eds.), *Encyclopedia of decision making and decision support technologies* (pp. 155–164). Hershey: Idea Group Inc.

Dolgui, A., Guschinsky, N., & Levin, G. (2008b). Decision making and support tools for design of transmission systems. In F. Adam & P. Humphreys (Eds.), *Encyclopedia of decision making and decision support technologies* (pp. 165–175). Hershey: Idea Group Inc.

Emelichev, V. A., Girlich, E. N., Nikulin, Y. V., & Podkopaev, D. P. (2002). Stability and regularization radius of vector problems of integer linear programming. *Optimization*, *51*(4), 645–676.

Ermoliev, Y. G., & Ermolieva, L. G. (1972). Method of parametric decomposition. *Kibernetika*, *1*, 66–69.

Ford, L. R. Jr., & Fulkerson, D. R. (1962). *Flows in networks*. Princeton: Princeton University Press.

Gladky, A. A., Shafransky, Y. M., & Strusevich, V. A. (2004). Flow shop scheduling problems under machine-dependent precedence constraints. *Journal of Combinatorial Optimization*, *8*, 13–28.

Gordon, V. S., & Shafransky, Y. M. (1977). On a class of scheduling problems with partially ordered jobs. In *Proceedings of the 4-th all-union conference on theoretical cybernetics problems*, Novosibirsk, August 30–September 1 (pp. 101–103) (in Russian).

Gordon, V. S., & Shafransky, Y. M. (1978a). Optimal ordering with series-parallel precedence constraints. *Doklady Akademii Nauk BSSR*, *22*(3), 244–247 (in Russian).

Gordon, V. S., & Shafransky, Y. M. (1978b). The decomposition approach to minimizing functions over a set of permutations of partially ordered elements. In *Proceedings of the 5-th all-union conference of complex system control* (pp. 51–56). Alma-Ata (in Russian).

Gordon, V. S., & Shafransky, Y. M. (1978c). On optimal ordering with series-parallel precedence constraints. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *5*, 135 (in Russian).

Gordon, V. S., & Strusevich, V. A. (1999). Earliness penalties on a single machine subject to precedence constraints: SLK due date assignment. *Computers & Operations Research*, *26*, 157–177.

Gordon, V. S., & Tanaev, V. S. (1971). Single-machine deterministic scheduling with step functions of penalties. In *Computers in engineering* (pp. 3–8). Minsk (in Russian).

Gordon, V. S., & Tanaev, V. S. (1973a). Single-machine deterministic scheduling with tree-like ordered jobs and exponential penalty functions. In *Computers in engineering* (pp. 3–10). Minsk (in Russian).

Gordon, V. S., & Tanaev, V. S. (1973b). Preemptions in deterministic systems with parallel machines and different release dates of jobs. In *Optimization of systems of collecting, transfer and processing of analogous and discrete data in local information computing systems. Materials of the 1st joint Soviet-Bulgarian seminar*. *Institute of Engineering Cybernetics of Academy of Sciences of BSSR—Institute of Engineering Cybernetics of Bulgarian Academy of Sciences* (pp. 36–50). Minsk (in Russian).

Gordon, V. S., & Tanaev, V. S. (1973c). Due dates in single-stage deterministic scheduling. In *Optimization of systems of collecting, transfer and processing of analogous and discrete data in local information computing systems*. *Materials of the 1st joint Soviet-Bulgarian seminar, Institute of Engineering Cybernetics of Academy of Sciences of BSSR—Institute of Engineering Cybernetics of Bulgarian Academy of Sciences* (pp. 54–58). Minsk (in Russian).

Gordon, V. S., & Tanaev, V. S. (1983). On minmax problems of scheduling theory for a single machine. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *3*, 3–9 (in Russian).

Gordon, V. S., & Tanaev, V. S. (2001). Scheduling decisions for the systems with deadlines. In Z. Binder (Ed.), *Proceedings of the 2nd IFAC/IFIP/IEEE conference, management and control of production and logistics* (vol. 2, pp. 687–690). Elmsford: Pergamon.

Gordon, V. S., Proth, J.-M., & Strusevich, V. A. (2005). Single machine scheduling and due date assignment under series-parallel precedence constraints. *Central European Journal of Operations Research*, *13*, 15–35.

Gordon, V. S., Potts, C. N., Strusevich, V. A., & Whitehead, J. D. (2008). Single machine scheduling models with deterioration and learning: Handling precedence constraints via priority generation. *Journal of Scheduling*, *11*, 357–370.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic scheduling: a survey. *Annals of Discrete Mathematics*, *5*, 287–326.

Guschinskaya, O., Dolgui, A., Guschinsky, N., & Levin, G. (2008). A heuristic multi-start decomposition approach for optimal design of serial machining lines. *European Journal of Operational Research*, *189*(3), 902–913.

Guschinsky, N. N., & Levin, G. M. (1987). Two-level optimization of a composite function and its application to a problem of path optimization in a graph. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *3*, 3–9 (in Russian).

Guschinsky, N. N., & Levin, G. M. (1991). Minimization of a monotone superposition of recurrent-monotone functions over the set of parametrized paths in a digraph. *Sistemy Modelirovaniya*, *17*, 167–178 (in Russian).

Guschinsky, N. N., Levin, G. M., & Tanaev, V. S. (1991). Parametric decomposition of problems of minimizing composite functions on parametrized paths in a digraph. *Soviet Journal of Computer and Systems Sciences*, *29*(6), 31–42 (translated from Russian, Izvestiya AN SSSR. Seria Tekhnicheskaya Kibernetika, 1990).

Guschinsky, N. N., Levin, G. M., & Dolgui, A. B. (2006). *Decision support for design of power transmissions*. Minsk: Belaruskaya Navuka (in Russian).

Hansen, P., Kuplinsky, J., & de Werra, D. (1997). Mixed graph colorings. *Mathematical Methods of Operational Research*, *45*, 145–160.

Hardy, G. H., Littlewood, J. E., & Polya, G. (1934). *Inequalities*. London: Cambridge University Press.

Horn, W. A. (1972). Single-machine job sequencing with treelike precedence ordering and linear delay penalties. *SIAM Journal of Applied Mathematics*, *23*, 189–202.

Horn, W. A. (1974). Some simple scheduling algorithms. *Naval Research Logistics Quarterly*, *21*(1), 177–185.

Hu, T. C. (1961). Parallel sequencing and assembly line problems. *Operations Research*, *9*, 841–848.

Jackson, J. R. (1955). *Scheduling a production line to minimize maximum tardiness* (Research Report 43, Management Science Research Project). University of California, Los Angeles, USA.

Janiak, A., & Kovalyov, M. Y. (2006). Scheduling in a contaminated area: a model and polynomial algorithms. *European Journal of Operational Research*, *173*, 125–132.

Janiak, A., Shafransky, Y. M., & Tuzikov, A. (2001). Sequencing with ordered criteria, precedence and group technology constraints. *Informatica*, *12*(1), 61–88.

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. *Naval Research Logistics Quarterly*, *1*, 61–68.

Karp, R. M. (1978). A characterization of the minimum cycle mean in a digraph. *Discrete Mathematics*, *23*, 309–311.

Karp, R. M., & Orlin, J. B. (1981). Parametric shortest path algorithms with an application to cyclic staffing. *Discrete Applied Mathematics*, *3*(1), 37–45.

Kladov, G. K., & Livshitz, E. M. (1968). On a scheduling problem to minimize the total penalty. *Kibernetika*, *6*, 99–100 (in Russian).

Kolen, A. W. J., Lenstra, J. K., Papadimitriou, C. H., & Spieksma, F. C. R. (2007). Interval scheduling: a survey. *Naval Research Logistics*, *54*, 530–543.

Kornai, J., & Liptak, T. (1965). Two-level planning. *Econometrica*, *33*, 141–169.

Kovalyov, M. Y., & Shafransky, Y. M. (1998). Uniform machine scheduling of unit-time jobs subject to resource constraints. *Discrete Applied Mathematics*, *84*, 253–257.

Kovalyov, M. Y., & Tuzikov, A. V. (1994). Sequencing groups of jobs on a single machine subject to precedence constraints. *Applied Mathematics and Computer Science*, *4*(4), 635–641.

Kovalyov, M. Y., Shafransky, Y. M., Strusevich, V. A., Tanaev, V. S., & Tuzikov, A. V. (1989). Approximation scheduling algorithms: a survey. *Optimization*, *20*(6), 859–878.

Kovalyov, M. Y., Ng, C. T., & Cheng, T. C. E. (2007). Fixed interval scheduling: models, applications, computational complexity and algorithms. *European Journal of Operational Research*, *178*, 331–342.

Kruger, K., Sotskov, Yu. N., & Werner, F. (1998). Heuristic for generalized shop scheduling problems based on decomposition. *International Journal of Production Research*, *36*(11), 3013–3033.

Lambin, N. V., & Tanaev, V. S. (1970). On circuit-free orientation of mixed graphs. *Doklady Akademii Nauk BSSR*, *14*(9), 780–781 (in Russian).

Laporte, G., & Osman, I. H. (1995). Routing problems: a bibliography. *Annals of Operation Research*, *61*(1), 227–262.

Leont’ev, V. K. (1975). Stability of the traveling salesman problem. *Zhurnal Vychislitel’noj Matematiki i Matematicheskoj Fiziki*, *15*(4), 1298–1309 (in Russian).

Levin, G. M. (1980). Towards optimization of functions recursively defined over weakly normalized sets of permutations. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *5*, 9–14.

Levin, G. M., & Tanaev, V. S. (1968). On a class of problems of combinatorial optimization. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *5*, 30–35 (in Russian).

Levin, G. M., & Tanaev, V. S. (1970). On the theory of optimization over a set of permutations. *Doklady Akademii Nauk BSSR*, *14*(7), 588–590 (in Russian).

Levin, G. M., & Tanaev, V. S. (1974a). Parametric decomposition of extremal problems. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *4*, 24–29 (in Russian).

Levin, G. M., & Tanaev, V. S. (1974b). Towards the theory of parametric decomposition of extremal problems. *Doklady Akademii Nauk BSSR*, *18*(10), 883–885 (in Russian).

Levin, G. M., & Tanaev, V. S. (1977). On parametric decomposition of extremal problems. *Kibernetika*, *3*, 123–128 (in Russian).

Levin, G. M., & Tanaev, V. S. (1978). *Decomposition methods in optimization of design decisions*. Minsk: Nauka i Tekhnika (in Russian).

Levin, G. M., & Tanaev, V. S. (1998). Parametric decomposition of optimization problems. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *4*, 121–131 (in Russian).

Levin, G. M., & Tanaev, V. S. (2002). Extended parametric decomposition of optimization problems: some properties and applications. *Iskusstvenny Intellekt*, *2*, 4–10 (in Russian).

Levin, G. M., Guschinsky, N. N., & Burdo, E. I. (2004). Optimization of transmission parameters of a cascade-reproduction structure. *Vestsi NAN of Belarus. Seryya Fizika-Matematychnykh Navuk*, *2*, 114–120.

Levner, E., Kats, V., & De Pablo, D. A. L. (2007). Cyclic scheduling in robotic cells: an extension of basic models in machine scheduling theory. In E. Levner (Ed.), *Multiprocessor scheduling: theory and applications* Vienna: Itech Education and Publishing.

Matyushkov, L. P., & Tanaev, V. S. (1967). A program generator for feasible schedules, I. In *Computers in engineering* (pp. 35–48). Minsk (in Russian).

Matyushkov, L. P., & Tanaev, V. S. (1968). A program generator for feasible schedules, II. In *Computers in engineering* (pp. 12–28). Minsk (in Russian).

McNaughton, R. (1959). Scheduling with deadlines and loss functions. *Management Science*, *6*(1), 1–12.

Megiddo, N. (1978). Combinatorial optimization with rational objective functions. In *Proceedings of the 10th annual ACM symposium on theory of computing* (pp. 1–12). San Diego.

Mikhalevich, V. S. (1965a). Sequential algorithms of optimization and their application: I. *Kibernetika*, *1*, 45–66.

Mikhalevich, V. S. (1965b). Sequential algorithms of optimization and their application: II. *Kibernetika*, *2*, 85–89 (in Russian).

Monma, C. L., & Sidney, J. B. (1979). Sequencing with series-parallel precedence constraints. *Mathematics of Operations Research*, *4*, 215–234.

Orlin, J. B., & Ahuja, R. K. (1992). New scaling algorithms for the assignment and minimum mean cycle problems. *Mathematical Programming*, *54*(1–3), 41–56.

Potts, C. N., & Strusevich, V. A. (2009). Fifty years of scheduling: a survey of milestones. *The Journal of the Operational Research Society*, *60*, S41–S68.

Ries, B. (2007). Coloring some classes of mixed graphs. *Discrete Applied Mathematics*, *155*, 1–6.

Ries, B., & de Werra, D. (2008). On two coloring problems in mixed graphs. *European Journal of Combinatorics*, *29*, 712–725.

Romanovskii, I. V. (1964). Asymptotic recursive relations of dynamic programming and optimal stationary control. *Doklady Akademii Nauk SSSR*, *157*(6), 1303–1306 (in Russian).

Romanovskii, I. V. (1967). Optimization of stationary control of a discrete deterministic process. *Kibernetika*, *3*, 66–78 (in Russian).

Rothkopf, M. H. (1966). Scheduling independent tasks on parallel processors. *Management Science*, *12*, 437–447.

Roy, B., & Sussmann, B. (1964). *Les problèmes d’ordonnancement avec contraintes disjonctives* (Note DS No 9 bis.). SEMA, Montrouge.

Shafransky, Y. M. (1978a). Optimization for deterministic scheduling systems with tree-like partial order. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *2*, 119 (in Russian).

Shafransky, Y. M. (1978b). On optimal sequencing for deterministic systems with tree-like partial order. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *2*, 120 (in Russian).

Shafransky, Y. M., & Strusevich, V. A. (1998). The open shop scheduling problem with a given sequence on one machine. *Naval Research Logistics*, *45*, 705–731.

Shakhlevich, N. V. (2005). Open shop unit-time scheduling problems with symmetric objective functions. *4OR*, *3*, 117–131.

Shakhlevich, N. V., Sotskov, Yu. N., & Werner, F. (1996). Adaptive scheduling algorithm based on the mixed graph model. *IEE Proceedings. Control Theory and Applications*, *43*(1), 9–16.

Smith, W. E. (1956). Various optimizers for single stage production. *Naval Research Logistics Quarterly*, *3*, 59–66.

Sotskov, Yu. N. (1991). Stability of an optimal schedule. *European Journal of Operational Research*, *55*, 91–102.

Sotskov, Yu. N. (1997). Mixed multigraph approach to scheduling jobs on machines of different types. *Optimization*, *42*, 245–280.

Sotskov, Yu. N., & Alyushkevich, V. B. (1988). Stability of optimal orientation of the edges of a mixed graph. *Doklady Akademii Nauk BSSR*, *32*(4), 108–111 (in Russian).

Sotskov, Yu. N., & Shakhlevich, N. V. (1995). NP-hardness of shop-scheduling problems with three jobs. *Discrete Applied Mathematics*, *59*, 237–266.

Sotskov, Yu. N., & Tanaev, V. S. (1974). On enumeration of the circuit-free digraphs generated by a mixed graph. *Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk*, *2*, 16–21 (in Russian).

Sotskov, Yu. N., & Tanaev, V. S. (1976a). On one approach to enumeration of the circuit-free digraphs generated by a mixed graph. *Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk*, *5*, 99–102 (in Russian).

Sotskov, Yu. N., & Tanaev, V. S. (1976b). A chromatic polynomial of a mixed graph. *Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk*, *6*, 20–23 (in Russian).

Sotskov, Yu. N., & Tanaev, V. S. (1989). Construction of a schedule admissible for a mixed multi-graph. *Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk*, *4*, 94–98 (in Russian).

Sotskov, Yu. N., & Tanaev, V. S. (1994). Scheduling theory and practice: Minsk group results. *Intelligent Systems Engineering*, *1*, 1–8.

Sotskov, Yu. N., Strusevich, V. A., & Tanaev, V. S. (1994). *Mathematical models and methods of production planning*. Minsk: Universitetskoe (in Russian).

Sotskov, Yu. N., Leontev, V. K., & Gordeev, E. N. (1995). Some concepts of stability analysis in combinatorial optimization. *Discrete Applied Mathematics*, *58*, 169–190.

Sotskov, Yu. N., Sotskova, N. Yu., & Werner, F. (1997). Stability of an optimal schedule in a job shop. *Omega*, *25*(4), 397–414.

Sotskov, Yu. N., Tanaev, V. S., & Werner, F. (1998a). Stability radius of an optimal schedule: a survey and recent development. In *Industrial applications of combinatorial optimization* (pp. 72–108). Boston: Kluwer Academic.

Sotskov, Yu. N., Wagelmans, A. P. M., & Werner, F. (1998b). On the calculation of the stability radius of an optimal or an approximate schedule. *Annals of Operation Research*, *83*, 213–252.

Sotskov, Yu. N., Dolgui, A., & Werner, F. (2001). Mixed graph coloring for unit-time job-shop scheduling. *International Journal of Mathematical Algorithms*, *2*, 289–323.

Sotskov, Yu. N., Tanaev, V. S., & Werner, F. (2002). Scheduling problems and mixed graph colorings. *Optimization*, *51*(3), 597–624.

Strusevich, V. A. (1997a). Multi-stage scheduling problems with precedence constraints. In C. Mitchell (Ed.), *Applications of combinatorial mathematics* (pp. 217–232). London: Oxford University Press.

Strusevich, V. A. (1997b). Shop scheduling problems under precedence constraints. *Annals of Operation Research*, *69*, 351–377.

Suprunenko, D. A., Aizenshtat, V. S., & Metel’sky, A. S. (1962). A multistage technological process. *Doklady Akademii Nauk BSSR*, *6*(9), 541–544 (in Russian).

Tanaev, V. S. (1964a). On a flow shop scheduling problem with one operator. *Inzhenerno-Fizicheskij Zhurnal*, *3*, 111–114 (in Russian).

Tanaev, V. S. (1964b). On a scheduling problem. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *4*, 128–131 (in Russian).

Tanaev, V. S. (1964c). On scheduling theory. *Doklady Akademii Nauk BSSR*, *8*(12), 792–794 (in Russian).

Tanaev, V. S. (1965). Some objective functions of a single stage production. *Doklady Akademii Nauk BSSR*, *9*(1), 11–14 (in Russian).

Tanaev, V. S. (1967). On the number of permutations of *n* partially ordered elements. *Doklady Akademii Nauk BSSR*, *9*(3), 208 (in Russian).

Tanaev, V. S. (1968). A method to solve a discrete programming problem. *Ekonomika i Matematicheskie Metody*, *4*(5), 776–782 (in Russian).

Tanaev, V. S. (1973). Preemptions in deterministic scheduling systems with parallel identical machines. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *6*, 44–48 (in Russian).

Tanaev, V. S. (1975). Mixed (disjunctive) graphs in scheduling problems. In *Large systems of information and control* (p. 181). Sofia (in Russian).

Tanaev, V. S. (1977a). On optimization of recursive functions on a set of permutations. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *3*, 27–30 (in Russian).

Tanaev, V. S. (Ed.) (1977b). *Program library for solving extremal problems. Issue 1* (p. 1997). Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (1979a). On optimal partitioning a finite set into subsets. *Doklady Akademii Nauk BSSR*, *23*(1), 26–28 (in Russian).

Tanaev, V. S. (Ed.) (1979b). *Program library for solving extremal problems. Issue 2*. Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (Ed.) (1980). *Algorithms and programs for solving optimization problems*. Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (Ed.) (1981). *Methods and programs for solving extremal problems*. Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (Ed.) (1982). *Methods and programs for solving extremal problems and related issues*. Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (Ed.) (1983). *Algorithms and programs for solving optimization problems*. Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (Ed.) (1984). *Complexity and methods for solving optimization problems*. Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (Ed.) (1985). *Methods, algorithms and programs for solving extremal problems*. Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (1987). *Decomposition and aggregation in mathematical programming problems*. Minsk: Nauka i Technika (in Russian).

Tanaev, V. S. (1988). *Scheduling theory*. Moscow: Znanie (in Russian).

Tanaev, V. S. (Ed.) (1989). *Methods for solving extremal problems*. Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (Ed.) (1990). *Methods for solving extremal problems and related issues*. Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (Ed.) (1991). *Extremal problems of optimal planning and design*. Minsk: Institute of Engineering Cybernetics (in Russian).

Tanaev, V. S. (1992). Symmetric functions in scheduling theory (single machine problems with the same job release dates). *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *5–6*, 97–101 (in Russian).

Tanaev, V. S. (1993). Symmetric functions in scheduling theory (single machine problems with distinct job release dates). *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *1*, 84–87 (in Russian).

Tanaev, V. S., & Gladky, A. A. (1994a). Symmetric functions in scheduling theory (identical machines problems with ordered set of jobs). *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *4*, 81–84 (in Russian).

Tanaev, V. S., & Gladky, A. A. (1994b). *Symmetric functions in scheduling theory (parallel machines systems)* (Preprint 23). Minsk: Institute of Engineering Cybernetics.

Tanaev, V. S., & Gordon, V. S. (1983). On scheduling to minimize the weighted number of late jobs. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *6*, 3–9 (in Russian).

Tanaev, V. S., & Levin, G. M. (1967). On optimal behavior of limited memory systems. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *3*, 82–88 (in Russian).

Tanaev, V. S., & Povarich, M. P. (1974). *Synthesis of graph-schemes of decision-making*. Minsk: Nauka i Technika.

Tanaev, V. S., & Shkurba, V. V. (1975). *Introduction to scheduling theory*. Moscow: Nauka (in Russian).

Tanaev, V. S., Gordon, V. S., & Shafransky, Y. M. (1984a). *Scheduling theory. Single-stage systems*. Moscow: Nauka (in Russian); translated into English by Kluwer Academic Publishers, Dordrecht (1994).

Tanaev, V. S., Levin, G. M., & Sannikova, A. K. (1984b). *Program package for multi-step optimization (PP MODA)*. Minsk: Institute of Engineering Cybernetics.

Tanaev, V. S., Gordon, V. S., Sotskov, Yu. N., Yanova, O. V., Shafransky, Y. M., Gorokh, O. V., & Baranovskaya, S. M. (1986a). *A package of applied programs for solving sequencing problems (PAP RUPOR)*. Minsk: Institute of Engineering (in Russian).

Tanaev, V. S., Levin, G. M., Rozin, B. M., & Sannikova, A. K. (1986b). *A dialog system for synthesis of programs of multi-step optimization (MODA-7920)*. Minsk: Institute of Engineering (in Russian).

Tanaev, V. S., Levin, G. M., Rozin, B. M., & Sannikova, A. K. (1986c). A dialog system for design of programs of multi-step optimization MODA-7906. *Upravlyayushchie Sistemy i Machiny*, *3*, 95–99.

Tanaev, V. S., Gordon, V. S., Sotskov, Yu. N., Yanova, O. V., Shafransky, Y. M., Gorokh, O. V., & Baranovskaya, S. M. (1987). *A package of applied programs for solving sequencing problems (PAP RUPOR). Programs description*. Minsk: Institute of Engineering (in Russian).

Tanaev, V. S., Gordon, V. S., Sotskov, Yu. N., & Yanova, O. V. (1989a). A program package for solving scheduling theory problems. *Upravlyayuschie Sistemy i Machiny*, *4*, 107–111 (in Russian).

Tanaev, V. S., Sotskov, Yu. N., & Strusevich, V. A. (1989b). *Scheduling theory. Multi-stage systems*. Moscow: Nauka (in Russian); translated into English by Kluwer Academic Publishers, Dordrecht (1994).

Tanaev, V. S., Kovalyov, M. Y., & Shafransky, Y. M. (1998). *Scheduling theory. Group technologies*. Minsk: Institute of Engineering (in Russian).

Tuzikov, A. V., & Shafransky, Y. M. (1983). On problems of lexicographic minimization on a set of permutations. *Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk*, *6*, 115 (in Russian).

Verina, L. F. (1985). Solution of some non-convex problems by reduction to convex mathematical programming. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *1*, 13–18 (in Russian).

Verina, L. F., & Levin, G. M. (1991). On a problem of optimization of a transfer function of network elements and its application to transmission design. *Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk*, *2*, 28–32 (in Russian).

Verina, L. F., Levin, G. M., & Tanaev, V. S. (1988). Parametric decomposition of extremal problems—a general approach and some applications. *Soviet Journal of Computer and Systems Sciences*, *26*(4), 137–148 (translated from Russian, *Izvestiya AN SSSR. Seria Tekhnicheskaya Kibernetika*).

Verina, L. F., Levin, G. M., & Tanaev, V. S. (1995). Towards the theory of parametric decomposition and immersion of extremum problems. *Doklady Akademii Nauk BSSR*, *39*(4), 9–12 (in Russian).

Young, N. E., Tarjan, R. E., & Orlin, J. B. (1991). Faster parametric shortest path and minimum-balance algorithms. *Networks*, *21*(2), 205–221.

Zinder, Y. A. (1976). The priority solvability of a class of scheduling problems. In *Problems of design of automated systems of production control* (pp. 56–63). Kiev (in Russian).