Skip to main content
Log in

Vyacheslav Tanaev: contributions to scheduling and related areas

Journal of Scheduling Aims and scope Submit manuscript

Abstract

This paper discusses several areas of research conducted by Vyacheslav Tanaev (1940–2002), mainly on scheduling. His contribution to the parametric decomposition of optimization problems is also addressed. For each area we focus on the most important results obtained by V.S. Tanaev and trace how his research has been advanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aizenshtat, V. S. (1963). Multi-operator cyclic processes. Doklady Akademii Nauk BSSR, 7(4), 224–227 (in Russian).

    Google Scholar 

  • Al-Anzi, F., Sotskov, Yu. N., Allahverdi, A., & Andreev, G. (2006). Using mixed graph coloring to minimize total completion time in job shop scheduling. Mathematics of Computation, 182, 1137–1148.

    Google Scholar 

  • Alyushkevich, V. B., & Sotskov, Yu. N. (1989). Stability in the problems of production planning. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 3, 102–107 (in Russian).

    Google Scholar 

  • Baker, K. R. (1974). Introduction to sequencing and scheduling. New York: Wiley.

    Google Scholar 

  • Baker, K. R., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1983). Preemptive scheduling of a single machine to minimize maximum cost subject to release dates and precedence constraints. Operations Research, 31(2), 381–386.

    Google Scholar 

  • Barkan, S. A., & Tanaev, V. S. (1970). On constructing class schedules. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 1, 76–81 (in Russian).

    Google Scholar 

  • Blazewicz, J. (1976). Scheduling dependent tasks with different arrival times to meet deadlines. In E. Gelenbe & H. Beilner (Eds.), Modelling and Performance Evaluation of Computer Systems (pp. 57–65). Amsterdam: North Holland.

    Google Scholar 

  • Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling. Berlin: Springer.

    Google Scholar 

  • Blokh, A. S., & Tanaev, V. S. (1966). Multioperator processes. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 2, 5–11 (in Russian).

    Google Scholar 

  • Brucker, P., Knust, S., Cheng, T. C. E., & Shakhlevich, N. V. (2004). Complexity results for flow-shop and open-shop scheduling problems with transportation delays. Annals of Operations Research, 129(1–4), 81–106.

    Google Scholar 

  • Christofides, N., & Beasley, J. E. (1984). Period routing problem. Networks, 14(2), 237–256.

    Google Scholar 

  • Coffman, E. G., & Graham, R. L. (1972). Optimal scheduling for two-processor systems. Acta Informatica, 1(3), 200–213.

    Google Scholar 

  • Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967). Theory of scheduling. Reading: Addison-Wesley.

    Google Scholar 

  • Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations Research, 8(1), 101–112.

    Google Scholar 

  • Dantzig, G. B., Blattner, W., & Rao, M. R. (1967). Finding a cycle in a graph with minimum cost to time ratio with application to a ship routing problem. In P. Rosenstiehl (Ed.), Theory of graphs (pp. 77–84). Paris/New York: Dunod/Gordon & Breach.

    Google Scholar 

  • Dawande, M., Geismer, H. N., Sethi, S. P., & Sriskandarajah, C. (2005). Sequencing and scheduling in robotic cells: Recent developments. Journal of Scheduling, 8(5), 387–426.

    Google Scholar 

  • Dilworth, R. P. (1950). A decomposition for partially ordered sets. Annals of Mathematics, 51, 161–166.

    Google Scholar 

  • Dolgui, A., Levin, G., & Louly, M. A. (2005). Decomposition approach for a problem of lot-sizing and sequencing under uncertainties. International Journal of Computer Integrated Manufacturing, 18(5), 376–385.

    Google Scholar 

  • Dolgui, A., Finel, B., Guschinskaya, O., Guschinsky, N., Levin, G., & Vernadat, F. (2006a). Balancing large-scale machining lines with multi-spindle heads using decomposition. International Journal of Production Research, 44(18–19), 4105–4120.

    Google Scholar 

  • Dolgui, A., Guschinsky, N., & Levin, G. (2006b). A decomposition method for transfer line life cycle cost optimization. Journal of Mathematical Modeling and Algorithms, 5, 215–238.

    Google Scholar 

  • Dolgui, A., Guschinsky, N., & Levin, G. (2007). Optimisation of power transmission systems using a multilevel decomposition approach. RAIRO–Operations Research, 41, 213–229.

    Google Scholar 

  • Dolgui, A., Guschinskaya, O., Guschinsky, N., & Levin, G. (2008a). Decision making and support tools for design of machining systems. In F. Adam & P. Humphreys (Eds.), Encyclopedia of decision making and decision support technologies (pp. 155–164). Hershey: Idea Group Inc.

    Google Scholar 

  • Dolgui, A., Guschinsky, N., & Levin, G. (2008b). Decision making and support tools for design of transmission systems. In F. Adam & P. Humphreys (Eds.), Encyclopedia of decision making and decision support technologies (pp. 165–175). Hershey: Idea Group Inc.

    Google Scholar 

  • Emelichev, V. A., Girlich, E. N., Nikulin, Y. V., & Podkopaev, D. P. (2002). Stability and regularization radius of vector problems of integer linear programming. Optimization, 51(4), 645–676.

    Google Scholar 

  • Ermoliev, Y. G., & Ermolieva, L. G. (1972). Method of parametric decomposition. Kibernetika, 1, 66–69.

    Google Scholar 

  • Ford, L. R. Jr., & Fulkerson, D. R. (1962). Flows in networks. Princeton: Princeton University Press.

    Google Scholar 

  • Gladky, A. A., Shafransky, Y. M., & Strusevich, V. A. (2004). Flow shop scheduling problems under machine-dependent precedence constraints. Journal of Combinatorial Optimization, 8, 13–28.

    Google Scholar 

  • Gordon, V. S., & Shafransky, Y. M. (1977). On a class of scheduling problems with partially ordered jobs. In Proceedings of the 4-th all-union conference on theoretical cybernetics problems, Novosibirsk, August 30–September 1 (pp. 101–103) (in Russian).

    Google Scholar 

  • Gordon, V. S., & Shafransky, Y. M. (1978a). Optimal ordering with series-parallel precedence constraints. Doklady Akademii Nauk BSSR, 22(3), 244–247 (in Russian).

    Google Scholar 

  • Gordon, V. S., & Shafransky, Y. M. (1978b). The decomposition approach to minimizing functions over a set of permutations of partially ordered elements. In Proceedings of the 5-th all-union conference of complex system control (pp. 51–56). Alma-Ata (in Russian).

    Google Scholar 

  • Gordon, V. S., & Shafransky, Y. M. (1978c). On optimal ordering with series-parallel precedence constraints. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 5, 135 (in Russian).

    Google Scholar 

  • Gordon, V. S., & Strusevich, V. A. (1999). Earliness penalties on a single machine subject to precedence constraints: SLK due date assignment. Computers & Operations Research, 26, 157–177.

    Google Scholar 

  • Gordon, V. S., & Tanaev, V. S. (1971). Single-machine deterministic scheduling with step functions of penalties. In Computers in engineering (pp. 3–8). Minsk (in Russian).

    Google Scholar 

  • Gordon, V. S., & Tanaev, V. S. (1973a). Single-machine deterministic scheduling with tree-like ordered jobs and exponential penalty functions. In Computers in engineering (pp. 3–10). Minsk (in Russian).

    Google Scholar 

  • Gordon, V. S., & Tanaev, V. S. (1973b). Preemptions in deterministic systems with parallel machines and different release dates of jobs. In Optimization of systems of collecting, transfer and processing of analogous and discrete data in local information computing systems. Materials of the 1st joint Soviet-Bulgarian seminar. Institute of Engineering Cybernetics of Academy of Sciences of BSSR—Institute of Engineering Cybernetics of Bulgarian Academy of Sciences (pp. 36–50). Minsk (in Russian).

    Google Scholar 

  • Gordon, V. S., & Tanaev, V. S. (1973c). Due dates in single-stage deterministic scheduling. In Optimization of systems of collecting, transfer and processing of analogous and discrete data in local information computing systems. Materials of the 1st joint Soviet-Bulgarian seminar, Institute of Engineering Cybernetics of Academy of Sciences of BSSR—Institute of Engineering Cybernetics of Bulgarian Academy of Sciences (pp. 54–58). Minsk (in Russian).

    Google Scholar 

  • Gordon, V. S., & Tanaev, V. S. (1983). On minmax problems of scheduling theory for a single machine. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 3, 3–9 (in Russian).

    Google Scholar 

  • Gordon, V. S., & Tanaev, V. S. (2001). Scheduling decisions for the systems with deadlines. In Z. Binder (Ed.), Proceedings of the 2nd IFAC/IFIP/IEEE conference, management and control of production and logistics (vol. 2, pp. 687–690). Elmsford: Pergamon.

    Google Scholar 

  • Gordon, V. S., Proth, J.-M., & Strusevich, V. A. (2005). Single machine scheduling and due date assignment under series-parallel precedence constraints. Central European Journal of Operations Research, 13, 15–35.

    Google Scholar 

  • Gordon, V. S., Potts, C. N., Strusevich, V. A., & Whitehead, J. D. (2008). Single machine scheduling models with deterioration and learning: Handling precedence constraints via priority generation. Journal of Scheduling, 11, 357–370.

    Google Scholar 

  • Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic scheduling: a survey. Annals of Discrete Mathematics, 5, 287–326.

    Google Scholar 

  • Guschinskaya, O., Dolgui, A., Guschinsky, N., & Levin, G. (2008). A heuristic multi-start decomposition approach for optimal design of serial machining lines. European Journal of Operational Research, 189(3), 902–913.

    Google Scholar 

  • Guschinsky, N. N., & Levin, G. M. (1987). Two-level optimization of a composite function and its application to a problem of path optimization in a graph. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 3, 3–9 (in Russian).

    Google Scholar 

  • Guschinsky, N. N., & Levin, G. M. (1991). Minimization of a monotone superposition of recurrent-monotone functions over the set of parametrized paths in a digraph. Sistemy Modelirovaniya, 17, 167–178 (in Russian).

    Google Scholar 

  • Guschinsky, N. N., Levin, G. M., & Tanaev, V. S. (1991). Parametric decomposition of problems of minimizing composite functions on parametrized paths in a digraph. Soviet Journal of Computer and Systems Sciences, 29(6), 31–42 (translated from Russian, Izvestiya AN SSSR. Seria Tekhnicheskaya Kibernetika, 1990).

    Google Scholar 

  • Guschinsky, N. N., Levin, G. M., & Dolgui, A. B. (2006). Decision support for design of power transmissions. Minsk: Belaruskaya Navuka (in Russian).

    Google Scholar 

  • Hansen, P., Kuplinsky, J., & de Werra, D. (1997). Mixed graph colorings. Mathematical Methods of Operational Research, 45, 145–160.

    Google Scholar 

  • Hardy, G. H., Littlewood, J. E., & Polya, G. (1934). Inequalities. London: Cambridge University Press.

    Google Scholar 

  • Horn, W. A. (1972). Single-machine job sequencing with treelike precedence ordering and linear delay penalties. SIAM Journal of Applied Mathematics, 23, 189–202.

    Google Scholar 

  • Horn, W. A. (1974). Some simple scheduling algorithms. Naval Research Logistics Quarterly, 21(1), 177–185.

    Google Scholar 

  • Hu, T. C. (1961). Parallel sequencing and assembly line problems. Operations Research, 9, 841–848.

    Google Scholar 

  • Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness (Research Report 43, Management Science Research Project). University of California, Los Angeles, USA.

  • Janiak, A., & Kovalyov, M. Y. (2006). Scheduling in a contaminated area: a model and polynomial algorithms. European Journal of Operational Research, 173, 125–132.

    Google Scholar 

  • Janiak, A., Shafransky, Y. M., & Tuzikov, A. (2001). Sequencing with ordered criteria, precedence and group technology constraints. Informatica, 12(1), 61–88.

    Google Scholar 

  • Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1, 61–68.

    Google Scholar 

  • Karp, R. M. (1978). A characterization of the minimum cycle mean in a digraph. Discrete Mathematics, 23, 309–311.

    Google Scholar 

  • Karp, R. M., & Orlin, J. B. (1981). Parametric shortest path algorithms with an application to cyclic staffing. Discrete Applied Mathematics, 3(1), 37–45.

    Google Scholar 

  • Kladov, G. K., & Livshitz, E. M. (1968). On a scheduling problem to minimize the total penalty. Kibernetika, 6, 99–100 (in Russian).

    Google Scholar 

  • Kolen, A. W. J., Lenstra, J. K., Papadimitriou, C. H., & Spieksma, F. C. R. (2007). Interval scheduling: a survey. Naval Research Logistics, 54, 530–543.

    Google Scholar 

  • Kornai, J., & Liptak, T. (1965). Two-level planning. Econometrica, 33, 141–169.

    Google Scholar 

  • Kovalyov, M. Y., & Shafransky, Y. M. (1998). Uniform machine scheduling of unit-time jobs subject to resource constraints. Discrete Applied Mathematics, 84, 253–257.

    Google Scholar 

  • Kovalyov, M. Y., & Tuzikov, A. V. (1994). Sequencing groups of jobs on a single machine subject to precedence constraints. Applied Mathematics and Computer Science, 4(4), 635–641.

    Google Scholar 

  • Kovalyov, M. Y., Shafransky, Y. M., Strusevich, V. A., Tanaev, V. S., & Tuzikov, A. V. (1989). Approximation scheduling algorithms: a survey. Optimization, 20(6), 859–878.

    Google Scholar 

  • Kovalyov, M. Y., Ng, C. T., & Cheng, T. C. E. (2007). Fixed interval scheduling: models, applications, computational complexity and algorithms. European Journal of Operational Research, 178, 331–342.

    Google Scholar 

  • Kruger, K., Sotskov, Yu. N., & Werner, F. (1998). Heuristic for generalized shop scheduling problems based on decomposition. International Journal of Production Research, 36(11), 3013–3033.

    Google Scholar 

  • Lambin, N. V., & Tanaev, V. S. (1970). On circuit-free orientation of mixed graphs. Doklady Akademii Nauk BSSR, 14(9), 780–781 (in Russian).

    Google Scholar 

  • Laporte, G., & Osman, I. H. (1995). Routing problems: a bibliography. Annals of Operation Research, 61(1), 227–262.

    Google Scholar 

  • Leont’ev, V. K. (1975). Stability of the traveling salesman problem. Zhurnal Vychislitel’noj Matematiki i Matematicheskoj Fiziki, 15(4), 1298–1309 (in Russian).

    Google Scholar 

  • Levin, G. M. (1980). Towards optimization of functions recursively defined over weakly normalized sets of permutations. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 5, 9–14.

    Google Scholar 

  • Levin, G. M., & Tanaev, V. S. (1968). On a class of problems of combinatorial optimization. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 5, 30–35 (in Russian).

    Google Scholar 

  • Levin, G. M., & Tanaev, V. S. (1970). On the theory of optimization over a set of permutations. Doklady Akademii Nauk BSSR, 14(7), 588–590 (in Russian).

    Google Scholar 

  • Levin, G. M., & Tanaev, V. S. (1974a). Parametric decomposition of extremal problems. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 4, 24–29 (in Russian).

    Google Scholar 

  • Levin, G. M., & Tanaev, V. S. (1974b). Towards the theory of parametric decomposition of extremal problems. Doklady Akademii Nauk BSSR, 18(10), 883–885 (in Russian).

    Google Scholar 

  • Levin, G. M., & Tanaev, V. S. (1977). On parametric decomposition of extremal problems. Kibernetika, 3, 123–128 (in Russian).

    Google Scholar 

  • Levin, G. M., & Tanaev, V. S. (1978). Decomposition methods in optimization of design decisions. Minsk: Nauka i Tekhnika (in Russian).

    Google Scholar 

  • Levin, G. M., & Tanaev, V. S. (1998). Parametric decomposition of optimization problems. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 4, 121–131 (in Russian).

    Google Scholar 

  • Levin, G. M., & Tanaev, V. S. (2002). Extended parametric decomposition of optimization problems: some properties and applications. Iskusstvenny Intellekt, 2, 4–10 (in Russian).

    Google Scholar 

  • Levin, G. M., Guschinsky, N. N., & Burdo, E. I. (2004). Optimization of transmission parameters of a cascade-reproduction structure. Vestsi NAN of Belarus. Seryya Fizika-Matematychnykh Navuk, 2, 114–120.

    Google Scholar 

  • Levner, E., Kats, V., & De Pablo, D. A. L. (2007). Cyclic scheduling in robotic cells: an extension of basic models in machine scheduling theory. In E. Levner (Ed.), Multiprocessor scheduling: theory and applications Vienna: Itech Education and Publishing.

    Google Scholar 

  • Matyushkov, L. P., & Tanaev, V. S. (1967). A program generator for feasible schedules, I. In Computers in engineering (pp. 35–48). Minsk (in Russian).

    Google Scholar 

  • Matyushkov, L. P., & Tanaev, V. S. (1968). A program generator for feasible schedules, II. In Computers in engineering (pp. 12–28). Minsk (in Russian).

    Google Scholar 

  • McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management Science, 6(1), 1–12.

    Google Scholar 

  • Megiddo, N. (1978). Combinatorial optimization with rational objective functions. In Proceedings of the 10th annual ACM symposium on theory of computing (pp. 1–12). San Diego.

    Google Scholar 

  • Mikhalevich, V. S. (1965a). Sequential algorithms of optimization and their application: I. Kibernetika, 1, 45–66.

    Google Scholar 

  • Mikhalevich, V. S. (1965b). Sequential algorithms of optimization and their application: II. Kibernetika, 2, 85–89 (in Russian).

    Google Scholar 

  • Monma, C. L., & Sidney, J. B. (1979). Sequencing with series-parallel precedence constraints. Mathematics of Operations Research, 4, 215–234.

    Google Scholar 

  • Orlin, J. B., & Ahuja, R. K. (1992). New scaling algorithms for the assignment and minimum mean cycle problems. Mathematical Programming, 54(1–3), 41–56.

    Google Scholar 

  • Potts, C. N., & Strusevich, V. A. (2009). Fifty years of scheduling: a survey of milestones. The Journal of the Operational Research Society, 60, S41–S68.

    Google Scholar 

  • Ries, B. (2007). Coloring some classes of mixed graphs. Discrete Applied Mathematics, 155, 1–6.

    Google Scholar 

  • Ries, B., & de Werra, D. (2008). On two coloring problems in mixed graphs. European Journal of Combinatorics, 29, 712–725.

    Google Scholar 

  • Romanovskii, I. V. (1964). Asymptotic recursive relations of dynamic programming and optimal stationary control. Doklady Akademii Nauk SSSR, 157(6), 1303–1306 (in Russian).

    Google Scholar 

  • Romanovskii, I. V. (1967). Optimization of stationary control of a discrete deterministic process. Kibernetika, 3, 66–78 (in Russian).

    Google Scholar 

  • Rothkopf, M. H. (1966). Scheduling independent tasks on parallel processors. Management Science, 12, 437–447.

    Google Scholar 

  • Roy, B., & Sussmann, B. (1964). Les problèmes d’ordonnancement avec contraintes disjonctives (Note DS No 9 bis.). SEMA, Montrouge.

  • Shafransky, Y. M. (1978a). Optimization for deterministic scheduling systems with tree-like partial order. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 2, 119 (in Russian).

    Google Scholar 

  • Shafransky, Y. M. (1978b). On optimal sequencing for deterministic systems with tree-like partial order. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 2, 120 (in Russian).

    Google Scholar 

  • Shafransky, Y. M., & Strusevich, V. A. (1998). The open shop scheduling problem with a given sequence on one machine. Naval Research Logistics, 45, 705–731.

    Google Scholar 

  • Shakhlevich, N. V. (2005). Open shop unit-time scheduling problems with symmetric objective functions. 4OR, 3, 117–131.

    Google Scholar 

  • Shakhlevich, N. V., Sotskov, Yu. N., & Werner, F. (1996). Adaptive scheduling algorithm based on the mixed graph model. IEE Proceedings. Control Theory and Applications, 43(1), 9–16.

    Google Scholar 

  • Smith, W. E. (1956). Various optimizers for single stage production. Naval Research Logistics Quarterly, 3, 59–66.

    Google Scholar 

  • Sotskov, Yu. N. (1991). Stability of an optimal schedule. European Journal of Operational Research, 55, 91–102.

    Google Scholar 

  • Sotskov, Yu. N. (1997). Mixed multigraph approach to scheduling jobs on machines of different types. Optimization, 42, 245–280.

    Google Scholar 

  • Sotskov, Yu. N., & Alyushkevich, V. B. (1988). Stability of optimal orientation of the edges of a mixed graph. Doklady Akademii Nauk BSSR, 32(4), 108–111 (in Russian).

    Google Scholar 

  • Sotskov, Yu. N., & Shakhlevich, N. V. (1995). NP-hardness of shop-scheduling problems with three jobs. Discrete Applied Mathematics, 59, 237–266.

    Google Scholar 

  • Sotskov, Yu. N., & Tanaev, V. S. (1974). On enumeration of the circuit-free digraphs generated by a mixed graph. Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk, 2, 16–21 (in Russian).

    Google Scholar 

  • Sotskov, Yu. N., & Tanaev, V. S. (1976a). On one approach to enumeration of the circuit-free digraphs generated by a mixed graph. Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk, 5, 99–102 (in Russian).

    Google Scholar 

  • Sotskov, Yu. N., & Tanaev, V. S. (1976b). A chromatic polynomial of a mixed graph. Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk, 6, 20–23 (in Russian).

    Google Scholar 

  • Sotskov, Yu. N., & Tanaev, V. S. (1989). Construction of a schedule admissible for a mixed multi-graph. Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk, 4, 94–98 (in Russian).

    Google Scholar 

  • Sotskov, Yu. N., & Tanaev, V. S. (1994). Scheduling theory and practice: Minsk group results. Intelligent Systems Engineering, 1, 1–8.

    Google Scholar 

  • Sotskov, Yu. N., Strusevich, V. A., & Tanaev, V. S. (1994). Mathematical models and methods of production planning. Minsk: Universitetskoe (in Russian).

    Google Scholar 

  • Sotskov, Yu. N., Leontev, V. K., & Gordeev, E. N. (1995). Some concepts of stability analysis in combinatorial optimization. Discrete Applied Mathematics, 58, 169–190.

    Google Scholar 

  • Sotskov, Yu. N., Sotskova, N. Yu., & Werner, F. (1997). Stability of an optimal schedule in a job shop. Omega, 25(4), 397–414.

    Google Scholar 

  • Sotskov, Yu. N., Tanaev, V. S., & Werner, F. (1998a). Stability radius of an optimal schedule: a survey and recent development. In Industrial applications of combinatorial optimization (pp. 72–108). Boston: Kluwer Academic.

    Google Scholar 

  • Sotskov, Yu. N., Wagelmans, A. P. M., & Werner, F. (1998b). On the calculation of the stability radius of an optimal or an approximate schedule. Annals of Operation Research, 83, 213–252.

    Google Scholar 

  • Sotskov, Yu. N., Dolgui, A., & Werner, F. (2001). Mixed graph coloring for unit-time job-shop scheduling. International Journal of Mathematical Algorithms, 2, 289–323.

    Google Scholar 

  • Sotskov, Yu. N., Tanaev, V. S., & Werner, F. (2002). Scheduling problems and mixed graph colorings. Optimization, 51(3), 597–624.

    Google Scholar 

  • Strusevich, V. A. (1997a). Multi-stage scheduling problems with precedence constraints. In C. Mitchell (Ed.), Applications of combinatorial mathematics (pp. 217–232). London: Oxford University Press.

    Google Scholar 

  • Strusevich, V. A. (1997b). Shop scheduling problems under precedence constraints. Annals of Operation Research, 69, 351–377.

    Google Scholar 

  • Suprunenko, D. A., Aizenshtat, V. S., & Metel’sky, A. S. (1962). A multistage technological process. Doklady Akademii Nauk BSSR, 6(9), 541–544 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1964a). On a flow shop scheduling problem with one operator. Inzhenerno-Fizicheskij Zhurnal, 3, 111–114 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1964b). On a scheduling problem. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 4, 128–131 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1964c). On scheduling theory. Doklady Akademii Nauk BSSR, 8(12), 792–794 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1965). Some objective functions of a single stage production. Doklady Akademii Nauk BSSR, 9(1), 11–14 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1967). On the number of permutations of n partially ordered elements. Doklady Akademii Nauk BSSR, 9(3), 208 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1968). A method to solve a discrete programming problem. Ekonomika i Matematicheskie Metody, 4(5), 776–782 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1973). Preemptions in deterministic scheduling systems with parallel identical machines. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 6, 44–48 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1975). Mixed (disjunctive) graphs in scheduling problems. In Large systems of information and control (p. 181). Sofia (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1977a). On optimization of recursive functions on a set of permutations. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 3, 27–30 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1977b). Program library for solving extremal problems. Issue 1 (p. 1997). Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1979a). On optimal partitioning a finite set into subsets. Doklady Akademii Nauk BSSR, 23(1), 26–28 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1979b). Program library for solving extremal problems. Issue 2. Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1980). Algorithms and programs for solving optimization problems. Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1981). Methods and programs for solving extremal problems. Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1982). Methods and programs for solving extremal problems and related issues. Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1983). Algorithms and programs for solving optimization problems. Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1984). Complexity and methods for solving optimization problems. Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1985). Methods, algorithms and programs for solving extremal problems. Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1987). Decomposition and aggregation in mathematical programming problems. Minsk: Nauka i Technika (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1988). Scheduling theory. Moscow: Znanie (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1989). Methods for solving extremal problems. Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1990). Methods for solving extremal problems and related issues. Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (Ed.) (1991). Extremal problems of optimal planning and design. Minsk: Institute of Engineering Cybernetics (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1992). Symmetric functions in scheduling theory (single machine problems with the same job release dates). Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 5–6, 97–101 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1993). Symmetric functions in scheduling theory (single machine problems with distinct job release dates). Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 1, 84–87 (in Russian).

    Google Scholar 

  • Tanaev, V. S., & Gladky, A. A. (1994a). Symmetric functions in scheduling theory (identical machines problems with ordered set of jobs). Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 4, 81–84 (in Russian).

    Google Scholar 

  • Tanaev, V. S., & Gladky, A. A. (1994b). Symmetric functions in scheduling theory (parallel machines systems) (Preprint 23). Minsk: Institute of Engineering Cybernetics.

  • Tanaev, V. S., & Gordon, V. S. (1983). On scheduling to minimize the weighted number of late jobs. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 6, 3–9 (in Russian).

    Google Scholar 

  • Tanaev, V. S., & Levin, G. M. (1967). On optimal behavior of limited memory systems. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 3, 82–88 (in Russian).

    Google Scholar 

  • Tanaev, V. S., & Povarich, M. P. (1974). Synthesis of graph-schemes of decision-making. Minsk: Nauka i Technika.

    Google Scholar 

  • Tanaev, V. S., & Shkurba, V. V. (1975). Introduction to scheduling theory. Moscow: Nauka (in Russian).

    Google Scholar 

  • Tanaev, V. S., Gordon, V. S., & Shafransky, Y. M. (1984a). Scheduling theory. Single-stage systems. Moscow: Nauka (in Russian); translated into English by Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  • Tanaev, V. S., Levin, G. M., & Sannikova, A. K. (1984b). Program package for multi-step optimization (PP MODA). Minsk: Institute of Engineering Cybernetics.

    Google Scholar 

  • Tanaev, V. S., Gordon, V. S., Sotskov, Yu. N., Yanova, O. V., Shafransky, Y. M., Gorokh, O. V., & Baranovskaya, S. M. (1986a). A package of applied programs for solving sequencing problems (PAP RUPOR). Minsk: Institute of Engineering (in Russian).

    Google Scholar 

  • Tanaev, V. S., Levin, G. M., Rozin, B. M., & Sannikova, A. K. (1986b). A dialog system for synthesis of programs of multi-step optimization (MODA-7920). Minsk: Institute of Engineering (in Russian).

    Google Scholar 

  • Tanaev, V. S., Levin, G. M., Rozin, B. M., & Sannikova, A. K. (1986c). A dialog system for design of programs of multi-step optimization MODA-7906. Upravlyayushchie Sistemy i Machiny, 3, 95–99.

    Google Scholar 

  • Tanaev, V. S., Gordon, V. S., Sotskov, Yu. N., Yanova, O. V., Shafransky, Y. M., Gorokh, O. V., & Baranovskaya, S. M. (1987). A package of applied programs for solving sequencing problems (PAP RUPOR). Programs description. Minsk: Institute of Engineering (in Russian).

    Google Scholar 

  • Tanaev, V. S., Gordon, V. S., Sotskov, Yu. N., & Yanova, O. V. (1989a). A program package for solving scheduling theory problems. Upravlyayuschie Sistemy i Machiny, 4, 107–111 (in Russian).

    Google Scholar 

  • Tanaev, V. S., Sotskov, Yu. N., & Strusevich, V. A. (1989b). Scheduling theory. Multi-stage systems. Moscow: Nauka (in Russian); translated into English by Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  • Tanaev, V. S., Kovalyov, M. Y., & Shafransky, Y. M. (1998). Scheduling theory. Group technologies. Minsk: Institute of Engineering (in Russian).

    Google Scholar 

  • Tuzikov, A. V., & Shafransky, Y. M. (1983). On problems of lexicographic minimization on a set of permutations. Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk, 6, 115 (in Russian).

    Google Scholar 

  • Verina, L. F. (1985). Solution of some non-convex problems by reduction to convex mathematical programming. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 1, 13–18 (in Russian).

    Google Scholar 

  • Verina, L. F., & Levin, G. M. (1991). On a problem of optimization of a transfer function of network elements and its application to transmission design. Vestsi Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 2, 28–32 (in Russian).

    Google Scholar 

  • Verina, L. F., Levin, G. M., & Tanaev, V. S. (1988). Parametric decomposition of extremal problems—a general approach and some applications. Soviet Journal of Computer and Systems Sciences, 26(4), 137–148 (translated from Russian, Izvestiya AN SSSR. Seria Tekhnicheskaya Kibernetika).

    Google Scholar 

  • Verina, L. F., Levin, G. M., & Tanaev, V. S. (1995). Towards the theory of parametric decomposition and immersion of extremum problems. Doklady Akademii Nauk BSSR, 39(4), 9–12 (in Russian).

    Google Scholar 

  • Young, N. E., Tarjan, R. E., & Orlin, J. B. (1991). Faster parametric shortest path and minimum-balance algorithms. Networks, 21(2), 205–221.

    Google Scholar 

  • Zinder, Y. A. (1976). The priority solvability of a class of scheduling problems. In Problems of design of automated systems of production control (pp. 56–63). Kiev (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Kovalyov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, V.S., Kovalyov, M.Y., Levin, G.M. et al. Vyacheslav Tanaev: contributions to scheduling and related areas. J Sched 15, 403–418 (2012). https://doi.org/10.1007/s10951-011-0230-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-011-0230-4

Keywords

Navigation