Skip to main content
Log in

Real-time envelope cross-correlation detector: application to induced seismicity in the Insheim and Landau deep geothermal reservoirs

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We develop and test a real-time envelope cross-correlation detector for use in seismic response plans to mitigate hazard of induced seismicity. The incoming seismological data are cross-correlated in real-time with a set of previously recorded master events. For robustness against small changes in the earthquake source locations or in the focal mechanisms we cross-correlate the envelopes of the seismograms rather than the seismograms themselves. Two sequenced detection conditions are implemented: After passing a single trace cross-correlation condition, a network cross-correlation is calculated taking amplitude ratios between stations into account. Besides detecting the earthquake and assigning it to the respective reservoir, real-time magnitudes are important for seismic response plans. We estimate the magnitudes of induced microseismicity using the relative amplitudes between master event and detected event. The real-time detector is implemented as a SeisComP3 module. We carry out offline and online performance tests using seismic monitoring data of the Insheim and Landau geothermal power plants (Upper Rhine Graben, Germany), also including blasts from a nearby quarry. The comparison of the automatic real-time catalogue with a manually processed catalogue shows, that with the implemented parameters events are always correctly assigned to the respective reservoir (4 km distance between reservoirs) or the quarry (8 km and 10 km distance, respectively, from the reservoirs). The real-time catalogue achieves a magnitude of completeness around 0.0. Four per cent of the events assigned to the Insheim reservoir and zero per cent of the Landau events are misdetections. All wrong detections are local tectonic events, whereas none are caused by seismic noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agemar T, Weber J, Schulz R (2014) Deep geothermal energy production in Germany. Energies - Special Issue Geothermal Energy - Delivering on the Global Potential, vol 7. doi:10.3390/en7074397

  • Baer M, Kradolfer U (1987) An automatic phase picker for local and teleseismic events. Bull Seismol Soc Am 77(4):1437–1445

    Google Scholar 

  • Baisch S, Fritschen R, Gross JC, Kraft T, Plenefisch T, Plenkers K, Ritter JR, Wassermann J (2012) Empfehlungen zur U̇berwachung induzierter Seismizität - Positionspapier des FKPE. Mitteilungen der Deutschen Geophysikalischen Gesellschaft:17–31. in German

  • Barth A (2011) Die Erdbeben in Kandel/Südpfalz von 1880 und 1903. Bautechnik 88(12):860–865. in German

    Article  Google Scholar 

  • Baumgärtner J, Lerch C (2013) Geothermal 2.0: The Insheim geothermal power plant, the second generation of geothermal power plants in the Upper Rhine Graben. In: BESTEC GmbH, Review, Third European Geothermal, Papers and Abstracts, pp. 910

  • Baumgärtner J, Hettkamp T, Teza D, Kölbel T, Merger H, Schlagermann P, Lerch C (2013) Betriebserfahrung mit den Geothermiekraftwerken Landau, Insheim und Bruchsal. bbr - Leitunsgbau, Brunnenbau. Geothermie 5:48–58. in German

    Google Scholar 

  • Beyreuther M, Hammer C, Wassermann J, Ohrnberger M, Megies T (2012) Constructing a Hidden Markov Model based earthquake detector: application to induced seismicity. Geophys J Int 189 (1):602–610. doi:10.1111/j.1365-246X.2012.05361.x

    Article  Google Scholar 

  • Bobrov D, Kitov I, Zerbo L (2014) Perspectives of cross-correlation in seismic monitoring at the International Data Centre. Pure Appl Geophys 171(3-5):439–468. doi:10.1007/s00024-012-0626-x

    Article  Google Scholar 

  • Bommer JJ, Oates S, Cepeda JM, Lindholm C, Bird J, Torres R, Marroquín G, Rivas J (2006) Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Eng Geol 83(4):287–306. doi:10.1016/j.enggeo.2005.11.002

    Article  Google Scholar 

  • Bönnemann C, Schmidt B, Ritter JR, Gestermann N, Plenefisch T, Wegler U (2010) Das seismische Ereignis bei Landau vom 15. August 2009 - Abschlussbericht der Expertengruppe Seismisches Risiko bei hydrothermaler Geothermie. Tech. rep., BGR Hannover, in German

  • Chen CH, Chao WA, Wu YM, Zhao L, Chen YG, Ho WY, Lin TL, Kuo KH, Chang JM (2013) A seismological study of landquakes using a real-time broad-band seismic network. Geophys J Int 194(2):885–898. doi:10.1093/gji/ggt121

    Article  Google Scholar 

  • Cleveland KM, Ammon CJ (2015) Precise relative earthquake magnitudes from cross correlation. Bull Seismol Soc Am 105(3):1792–1796. doi:10.1785/0120140329

    Article  Google Scholar 

  • Deutsches Institut für Normung e.V. (2015) DIN 4150-3:2015-10: Messung von Schwingungsimmissionen - Teil 3: Einwirkungen auf bauliche Anlagen. In German

  • Dodge DA, Walter WR (2015) Initial global seismic cross-correlation results: Implications for empirical signal detectors. Bull Seismol Soc Am 105(1). doi:10.1785/0120140166

  • Edwards B, Kraft T, Cauzzi C, Kästli P, Wiemer S (2015) Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland. Geophys J Int 201(2):1022–1039. doi:10.1093/gji/ggv059

    Article  Google Scholar 

  • Evans KF, Moriya H, Niitsuma H, Jones RH, Phillips WS, Genter A, Sausse J, Jung R, Baria R (2005) Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site. Geophys J Int 160 (1):388–412. doi:10.1111/j.1365-246X.2004.02474.x

    Google Scholar 

  • Fäh D, Gisler M, Jaggi B, Kästli P, Lutz T, Masciadri V, Matt C, Mayer-Rosa D, Rippmann D, Schwarz-Zanetti G, Tauber J, Wenk T (2009) The 1356 Basel earthquake: an interdisciplinary revision. Geophys J Int 178(1):351–374. doi:10.1111/j.1365-246X.2009.04130.x

    Article  Google Scholar 

  • Farahbod AM, Kao H, Walker DM, Cassidy JF (2015) Investigation of regional seismicity before and after hydraulic fracturing in the Horn River Basin, Northeast British Columbia. Can J Earth Sci 52(2):112–122. doi:10.1139/cjes-2014-0162

    Article  Google Scholar 

  • Forghani-Arani F, Behura J, Haines SS, Batzle M (2013) An automated cross-correlation based event detection technique and its application to a surface passive data set. Geophys Prospect 61 (4):778–787. doi:10.1111/1365-2478.12033

    Article  Google Scholar 

  • GeORG Project Team (2013) Geopotenziale des tieferen Untergrundes im Oberrheingraben. LGRB-Informationen 28, Fachlich-Technischer Abschlussbericht des INTERREG-Projekts GeORG, Teil 1. (in German)

  • Gibbons S, Ringdal F (2012) Seismic monitoring of the North Korea nuclear test site using a multichannel correlation detector. IEEE Trans Geosci Remote Sens 50(5):1897–1909. doi:10.1109/TGRS.2011.2170429

    Article  Google Scholar 

  • Gibbons SJ, Ringdal F (2006) The detection of low magnitude seismic events using array-based waveform correlation. Geophys J Int 165(1):149–166. doi:10.1111/j.1365-246X.2006.02865.x

    Article  Google Scholar 

  • Groos JC, Ritter JR (2014) Verbundprojekt MAGS - Konzepte zur Begrenzung der mikroseismischen Aktivität bei der energetischen Nutzung geothermischer Systeme im tiefen Untergrund, Einzelprojekt 1: Quantifizierung und Charakterisierung des induzierten seismischen Volumens im Bereich Landau / Südpfalz. Tech. rep., Karlsruher Institut für Technologie, Final Report of the Project MAGS. in German

  • Groos JC, Fritschen R, Ritter JR (2013) Untersuchung induzierter Erdbeben hinsichtlich ihrer Spürbarkeit und eventueller Schadenswirkung anhand DIN 4150. Bauingenieur:88. in German

  • Grund M, Groos JC, Ritter JRR (2016) Fault reactivation analysis using microearthquake clustering based on signal-to-noise weighted waveform similarity. Pure Appl Geophys:1–31. doi:10.1007/s00024-016-1281-4

  • Grünthal G, Wahlström R (2012) The european-mediterranean earthquake catalogue (EMEC) for the last millennium. J Seismol 16(3):535–570. doi:10.1007/s10950-012-9302-y

    Article  Google Scholar 

  • Hanka W, Saul J, Weber B, Becker J, Team GITEWS (2008) Timely regional tsunami warning and rapid global earthquake monitoring. Orfeus newsletter:8

  • Häring M, Schanz U, Ladner F, Dyer B (2008) Characterisation of the Basel 1 enhanced geothermal system. Geothermics 37(5):469–495. doi:10.1016/j.geothermics.2008.06.002

    Article  Google Scholar 

  • Harris DB, Paik T (2006) Subspace detectors: Efficient implementation. Tech rep. lawrence Livermore National Laboratory, United States

  • Heimlich C, Gourmelen N, Masson F, Schmittbuhl J, Kim SW, Azzola J (2015) Uplift around the geothermal power plant of Landau (Germany) as observed by InSAR monitoring. Geotherm Energy 3(1):2. doi:10.1186/s40517-014-0024-y

  • Hettkamp T, Baumgärtner J, Teza D, Lerch C (2013) Experiences from 5 years operation in Landau. In: BESTEC GmbH (ed) Review, Third European Geothermal, Papers and Abstracts, p 23

  • Holland AA (2013) Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bull Seismol Soc Am 103(3):1784–1792. doi:10.1785/0120120109

    Article  Google Scholar 

  • Illies J (1972) The Rhine Graben rift system-plate tectonics and transform faulting. Geophys Surv 1(1):27–60. doi:10.1007/BF01449550

    Article  Google Scholar 

  • Joswig M (1990) Pattern recognition for earthquake detection. Bull Seismol Soc Am 80(1):170–186

    Google Scholar 

  • Kraft T, Mai P, Wiemer S, Deichmann N, Ripperger J, Kästli P, Bachmann C, Fäh D, Wössner J, Giardini D (2009) Enhanced geothermal systems: Mitigating risk in urban areas. Eos 90(32):273–274. doi:10.1029/2009EO320001

    Article  Google Scholar 

  • Kubacki T, Koper KD, Pankow KL, McCarter MK (2014) Changes in mining-induced seismicity before and after the 2007 Crandall Canyon mine collapse. J Geophys Res Solid Earth 119(6):4876–4889. doi:10.1002/2014JB011037

    Article  Google Scholar 

  • Landesamt für Geologie und Bergbau Rheinland-Pfalz (2015) Homepage of the Landesamt für Geologie und Bergbau Rheinland-pfalz. www.lgb-rlp.de, accessed 08 May 2015

  • Lee W, Bennet R, Meaghu K (1972) A method of estimating magnitude of local earthquakes from signal duration. Tech rep., US Geological Survey, USGS Open File Report

  • Leydecker G (2011) Erdbebenkatalog für Deutschland mit Randgebieten für die Jahre 800 bis 2008 (Earthquake catalogue for Germany and adjacent areas for the years 800 to 2008). Geologisches Jahrbuch:1–198. in German

  • Ohrnberger M (2001) Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, Java, Indonesia. Ph.D. Thesis, Math.-Naturwissenschaftliche Fakulatät der Univ, Potsdam, Germany

  • Plenkers K, Ritter JR, Schindler M (2013) Low signal-to-noise event detection based on waveform stacking and cross-correlation: application to a stimulation experiment. J Seismol 17(1):27–49. doi:10.1007/s10950-012-9284-9

    Article  Google Scholar 

  • Richards PG, Waldhauser F, Schaff D, Kim WY (2006) The applicability of modern methods of earthquake location. Pure Appl Geophys 163(2-3):351–372. doi:10.1007/s00024-005-0019-5

    Article  Google Scholar 

  • Richter CF (1935) An instrumental earthquake-magnitude scale. Bull Seismol Soc Am 25(1):1–32

    Google Scholar 

  • Rubinstein JL, Ellsworth WL (2010) Precise estimation of repeating earthquake moment: Example from Parkfield, California. Bull Seismol Soc Am 100(5A):1952–1961. doi:10.1785/0120100007

    Article  Google Scholar 

  • Schaff DP (2010) Improvements to detection capability by cross-correlating for similar events: a case study of the 1999 Xiuyan, China, sequence and synthetic sensitivity tests. Geophys J Int 180(2):829–846. doi:10.1111/j.1365-246X.2009.04446.x

    Article  Google Scholar 

  • Schaff DP, Richards PG (2011) On finding and using repeating seismic events in and near China. J Geophys Res Solid Earth 116:b03309. doi:10.1029/2010JB007895

    Article  Google Scholar 

  • Schaff DP, Richards PG (2014) Improvements in magnitude precision, using the statistics of relative amplitudes measured by cross correlation. Geophys J Int 197(1):335–350. doi:10.1093/gji/ggt433

    Article  Google Scholar 

  • Schaff DP, Waldhauser F (2010) One magnitude unit reduction in detection threshold by cross correlation applied to Parkfield (California) and China seismicity. Bull Seismol Soc Am 100(6):3224–3238. doi:10.1785/0120100042

    Article  Google Scholar 

  • Shapiro SA, Dinske C, Kummerow J (2007) Probability of a given-magnitude earthquake induced by a fluid injection. Geophys Res Lett 34(22). doi:10.1029/2007GL031615

  • Shelly DR, Beroza GC, Ide S (2007) Non-volcanic tremor and low-frequency earthquake swarms. Nature 446:305–307. doi:10.1038/nature05666

    Article  Google Scholar 

  • Skoumal RJ, Brudzinski MR, Currie BS, Levy J (2014) Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence. Earth Planet Sci Lett 405 (0):274–280. doi:10.1016/j.epsl.2014.08.033

    Article  Google Scholar 

  • Slinkard ME, Carr DB, Young CJ (2013) Applying waveform correlation to three aftershock sequences. Bull Seismol Soc Am 103(2A):675–693. doi:10.1785/0120120058

    Article  Google Scholar 

  • Song F, Kuleli HS, Toksoez MN, Ay E, Zhang H (2010) An improved method for hydrofracture-induced microseismic event detection and phase picking. Geophysics 75(6):A47–A52. doi:10.1190/1.3484716

    Article  Google Scholar 

  • Stange S (2006) M L determination for local and regional events using a sparse network in Southwestern Germany. J Seismol 10 (2):247–257. doi:10.1007/s10950-006-9010-6

    Article  Google Scholar 

  • Walsh FR, Zoback MD (2015) Oklahoma’s recent earthquakes and saltwater disposal. Sci Adv 1 (5). doi:10.1126/sciadv.1500195

  • Weingarten M, Ge S, Godt JW, Bekins BA, Rubinstein JL (2015) High-rate injection is associated with the increase in u.s. mid-continent seismicity. Science 348(6241):1336–1340. doi:10.1126/science.aab1345

    Article  Google Scholar 

  • Withers M, Aster R, Young C (1999) An automated local and regional seismic event detection and location system using waveform correlation. Bull Seismol Soc Am 89(3):657–669

    Google Scholar 

  • Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95(2):684–698. doi:10.1785/0120040007

    Article  Google Scholar 

  • Ziegler PA (1992) European Cenozoic rift system. Tectonophysics, vol 208. geodynamics of rifting, volume 1 Case history studies on rifts: Europe and Asia

Download references

Acknowledgments

This study was performed in the framework of the joint projects MAGS and MAGS2. The projects were funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) and supervised by Project Management Jülich (PtJ) (BMWi grand numbers 0325191A-F and 0325662A-G, respectively). We thank Joachim Ritter, Jens Zeiss and Jörn Gross for providing the thoroughly processed catalogue and the seismic data of the KIT online stations. Many thanks to BESTEC for nature GmbH, Pfalzwerke GmbH and geo x GmbH for the open and fruitful cooperation. Also the technical support by the BGR colleagues Mark Hanneken and Erwin Hinz for maintaining the BGR mobile stations and the help by Mathias Hoffmann regarding SeisComP3 issues are gratefully acknowledged. We also want to thank the two anonymous reviewers for their detailed reviews that helped to significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarete Vasterling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasterling, M., Wegler, U., Becker, J. et al. Real-time envelope cross-correlation detector: application to induced seismicity in the Insheim and Landau deep geothermal reservoirs. J Seismol 21, 193–208 (2017). https://doi.org/10.1007/s10950-016-9597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-016-9597-1

Keywords

Navigation