Skip to main content

Advertisement

Log in

Comparing seismic susceptibility models of the Himalayan terrain

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The ongoing intra-continental collision between the Indian and Eurasian plates along the Himalayas has resulted in many damaging earthquakes with severe damages to man-made structures and natural landscapes due to ground shaking and ground failure, which in turn depends on geomorphological, geological and geophysical variables. Seismic susceptibility models are developed for Gangtok City by combining all the three variables using both knowledge-driven and data-driven methods on facet and grid cell terrain units. Finally, the results are critically evaluated by validation with the earthquake intensity data recorded during earthquake events. First-stage modelling attempt using different knowledge-driven methods on different terrain units shows bi-modal data distribution with low predictability due to extremely rugged topography with wide altitudinal variations within short distances. Second-stage modelling of separated population by using the same methodologies increases model predictability in which one model method describes the higher topographic levels better and the other model method is found to be better for lower topographic levels. Seismic susceptibility of the area is best described by composite models, combining different best methods of fine classification for lower and higher topographic levels having the same mapping/terrain units. Comparison of the composite models shows that the terrain unit does not play a significant role but the type of models selected determines the best possible seismic susceptibility map of the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdrakhmatov K, Havenith HB, Delvaux D, Jongmans D, Trefois P (2003) Probabilistic PGA and Arias intensity maps of Kyrgyzstan (Central Asia). J Seismol 7(2):203–220

    Article  Google Scholar 

  • Abrahamson NA, Litehiser JJ (1989) Attenuation of vertical peak acceleration. Bull Seismol Soc Am 79(3):549–580

    Google Scholar 

  • Acharya SK, Sastry MVA (1979) Stratigraphy of eastern Himalaya. GSI Mis Pub 41:49–67

    Google Scholar 

  • Aki K (1967) Saling law of seismic spectrum. J Geophys Res 72:1217–1231

    Article  Google Scholar 

  • Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47:107–124

    Article  Google Scholar 

  • Ansal A. et al. (2004) Seismic microzonation for earthquake risk mitigation in Turkey 13th World Conference on Earthquake Engineering, Vancouver B.C., Canada

  • Arias A (1970) A measure of earthquake intensity. In: Hansen RJ (ed) Seismic design for nuclear power plants. MIT Press, Cambridge, pp 438–483

    Google Scholar 

  • Atkinson GM (2004) Empirical attenuation of ground-motion spectral amplitudes in southeastern Canada and the northeastern United States. Bull Seismol Soc Am 94:1079–1095

    Article  Google Scholar 

  • Bathrellos G, Gaki-Papanastassiou K, Skilodimou H, Papanastassiou D, Chousianitis K (2012) Potential suitability for urban planning and industry development using natural hazard maps and geological-geomorphological parameters. Environ Earth Sci 66(2):537–548

    Article  Google Scholar 

  • Bathrellos G, Gaki-Papanastassiou K, Skilodimou H, Skianis G, Chousianitis K (2013) Assessment of rural community and agricultural development using geomorphological-geological factors and GIS in the Trikala prefecture (central Greece). Stoch Env Res Risk A 27(2):573–588

    Article  Google Scholar 

  • Bazzurro P, Cornell CA (2004) Nonlinear soil-site effects in probabilistic seismic-hazard analysis. Bull Seismol Soc Am 94(6):2110–2123

    Article  Google Scholar 

  • Bhatia SC, Kumar MR, Gupta HK (1999) A probabilistic seismic hazard map of India and adjoining regions. Ann Geophys 42(6):1153–1164

    Google Scholar 

  • Bilham R, Ambraseys N (2005) Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Curr Sci 88:1658–1667

    Google Scholar 

  • Bilham R, Gaur VK, Molnar P (2001) Himalayan seismic hazard. Science 293:1442–1444

    Article  Google Scholar 

  • Bird JF, Bommer JJ (2004) Earthquake losses due to ground failure. Eng Geol 75:147–179

    Article  Google Scholar 

  • BIS (1998) Preparation of landslide hazard zonation maps in mountainous terrain-guidelines (IS 14496, part 2). Indian Standards, New Delhi, 19 pp

    Google Scholar 

  • BIS-1893 (2002) Earthquake hazard zoning map of India (www.bis.org.in)

  • Bollinger L, Avouac JP, Cattin R, Pandey MR (2004) Stress buildup in the Himalaya. J Geophys Res. 109(B11405)

  • Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160:636–676

    Article  Google Scholar 

  • Boore DM (2004) Estimating Vs30 (or NEHRP site classes) from shallow velocity models (depths < 30 m). Bull Seismol Soc Am 94(2):591–597

    Article  Google Scholar 

  • Boore DM, Joyner WB (1997) Site amplifications for generic rock sites. Bull Seismol Soc Am 87:327–341

    Google Scholar 

  • Boore DM, Harmsen SC, Harding ST (1981) Wave scattering from a step change in surface topography. Bull Seismol Soc Am 71(1):117–125

    Google Scholar 

  • Borcherdt RD, Glassmoyer G (1992) On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Francisco Bay region, California. Bull Seismol Soc Am 82(2):603–641

    Google Scholar 

  • Brocher TM (2008) Compressional and shear-wave velocity versus depth relations for common rock types in northern California. Bull Seismol Soc Am 98(2):950–968

    Article  Google Scholar 

  • Budnitz RJ et al. (1997) Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts. Lawrence Livermore National Laboratory

  • Cannon SH (2000) Debris flow response of southern California watersheds burned by wildfire. In: Wieczorec GF, Naeser ND (eds) Debris flow hazards mitigation: mechanics, prediction and assessment. A.A. Balkema, Rotterdam, pp 45–52

    Google Scholar 

  • Carranza EJM (2009) Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry. 11. Elsevier

  • Carrara A, Crosta G, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94:353–378

    Article  Google Scholar 

  • Chavez-Garcia FJ, Sánchez LR, Hatzfeld D (1996) Topographic site effects and HVSR. A comparison between observations and theory. Bull Seismol Soc Am 86(5):1559–1573

    Google Scholar 

  • Chen W-P, Molnar P (1990) Source parameters of earthquakes and intraplate deformation beneath the Shillong Plateau and northern Indoburman Ranges. J Geophys Res 95:12527–12552

    Article  Google Scholar 

  • Chiou S-JB, Youngs RR (2006) PEER-NGA empirical ground motion model for the average horizontal component of peak acceleration and pseudo-spectral acceleration for spectral periods of 0.01 to 10 seconds, Interim Report for USGS Review, p. 219

  • Chousianitis K, Del Gaudio V, Kalogeras I, Ganas A (2014) Predictive model of Arias intensity and Newmark displacement for regional scale evaluation of earthquake-induced landslide hazard in Greece. Soil Dyn Earthq Eng 65:11–29

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Google Scholar 

  • Crampin S, Chastin S, Gao Y (2003) Shear-wave splitting in a critical crust: III. Preliminary report of multi-variable measurements in active tectonics. J Appl Geophys 54(3–4):265–277

    Article  Google Scholar 

  • Das I, Sahoo S, Westen C, Stein A, Hack R (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114:627–637

    Article  Google Scholar 

  • Dasgupta S, Mukhopadhyay M, Nandy DR (1987) Active transverse features in the central portion of the Himalaya. Tectonophysics 136:255–264

    Article  Google Scholar 

  • Dasgupta S. et al. (2000) Seismotectonic atlas of India and its environ. In: Narula PL, Acharyya SK, Banerjee J (eds) Geological Survey of India, Calcutta

  • De Luca G et al (1998) Site response study in Abruzzo (central Italy): underground array versus surface stations. J Seismol 2(3):223–236

    Article  Google Scholar 

  • Dymond JR, DeRose RC, Harmsworth GR (1995) Automated mapping of land components from digital elevation data. Earth Surf Process Landf 20:131–137

    Article  Google Scholar 

  • Fell R et al (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102(3–4):85–98

    Article  Google Scholar 

  • Finley JP (1884) Tornado predictions. Am Meteorol J 1:85–88

    Google Scholar 

  • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111:62–72

    Article  Google Scholar 

  • Gahalaut VK (2011) M 6.9 September 18, 2011 Sikkim earthquake. Geomatics, Nat Hazards Risk 2(4):325–328

    Article  Google Scholar 

  • Gallant JC, Wilson JP (2000) Primary topographic attributes. In: Gallant JC, Wilson JP (eds) Terrain analysis—principles and applications. Wiley, New York, pp 51–85

    Google Scholar 

  • Gilbert GF (1884) Finley’s tornado predictions. Am Meteorol J 1:166–172

    Google Scholar 

  • Gomberg J et al (2003) Lithology and shear-wave velocity in Memphis, Tennessee. Bull Seismol Soc Am 93(3):986–997

    Article  Google Scholar 

  • Gutenberg B (1957) Effects of ground on earthquake motion. Bull Seismol Soc Am 47(3):221–250

    Google Scholar 

  • Guy TK, Toksoz MN (1974) Velocity and attenuation of seismic waves in two phase media: part I. Theoretical formulations. Geophysics 39(5):587–606

    Article  Google Scholar 

  • Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, pp 523–602

    Google Scholar 

  • Hanssen AW, Kuipers WJA (1965) On the relationship between the frequency of rain and various meteorological parameters. Mededelingenen Verhandelingen 81:2–15

    Google Scholar 

  • Harp EL, Wilson RC (1995) Shaking intensity thresholds for rock falls and slides: evidence from 1987 Whittier Narrows and superstition hills earthquake strong-motion records. Bull Seismol Soc Am 85(6):1739–1757

    Google Scholar 

  • Horike M, Zhao B, Kawase H (2001) Comparison of site response characteristics inferred from microtremors and earthquake shear waves. Bull Seismol Soc Am 91(6):1526–1536

    Article  Google Scholar 

  • Hovius N et al (2011) Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet Sci Lett 304(3–4):347–355

    Article  Google Scholar 

  • Hsieh S-Y, Lee C-T (2011) Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration. Eng Geol 122(1–2):34–42

    Article  Google Scholar 

  • Hung LQ, Batelaan O, Smedt FD (2005) Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. In: Ehlers M, Michel U (eds) Remote sensing for environmental monitoring, GIS applications, and geology V. Proc. of SPIE

  • Imposa S, Coco G, Corrao M (2004) Site effects close to structural lineaments in eastern Sicily (Italy). Eng Geol 72(3–4):331–341

    Article  Google Scholar 

  • Isaaks EH, Srivastava RH (1989a) An introduction to allied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989b) An introduction to applied geostatistics. Oxford University Press, 561 pp

  • Iyenger RN (2000) Seismic status of Delhi megacity. Curr Sci 5:568–574

    Google Scholar 

  • Jibson RW (1993) Predicting earthquake induced landslide displacements using Newmark’s sliding block analysis, Transportation Research Record. Transportation Research Board, Washington, p 1411

    Google Scholar 

  • Jibson RW (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91(2–4):209–218

    Article  Google Scholar 

  • Jibson RW, Harp EL, Michael JA (1998) A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California area., USGS Open-File Report, No. 98-113. U. S. Geological Survey, Washington

    Google Scholar 

  • Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58(3–4):271–289

    Article  Google Scholar 

  • Joreskog KG, Klovan JE, Reyment RA (1976) Geological factor analysis. Elsevier, Amsterdam

    Google Scholar 

  • Joyner WB, Boore DM (1981) Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake. Bull Seismol Soc Am 71(6):2011–2038

    Google Scholar 

  • Keefer DK (1993) The susceptibility of rock slopes to earthquake-induced failure. Bull Assoc Eng Geol 30(3):353–361

    Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping: using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Lee S-J, Komatitsch D, Huang B-S, Tromp J (2009) Effects of topography on seismic-wave propagation: an example from northern Taiwan. Bull Seismol Soc Am 99(1):314–325

    Article  Google Scholar 

  • Lermo J, Chavez-Garcia FJ (1993) Site effect evaluation using spectral ratios with only one station. Bull Seismol Soc Am 83(5):1574–1594

    Google Scholar 

  • Levy J, Hall J (2005) Advances in flood risk management under uncertainty. Stoch Env Res Risk A 19(6):375–377

    Article  Google Scholar 

  • Mahajan AK, Thakur VC, Sharma M, Chauhan M (2010) Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India. Nat Hazards 53(3):443–457

    Article  Google Scholar 

  • Marra F et al (2000) Large amplification of ground motion at rock sites within a fault zone in Nocera Umbra (central Italy). J Seismol 4(4):543–554

    Article  Google Scholar 

  • Matsuoka M, Wakamatsu K, Fujimoto K, Midorikawa S (2005) Nationwide site amplification zoning using GIS-based Japan engineering geomorphologic classification map. Proc. 9th Int. Conf. on Struct. Safety and Reliability. 239–246

  • Mavrouli O, Corominas J, Wartman J (2009) Methodology to evaluate rock slope stability under seismic conditions at Solà de Santa Coloma, Andorra. Nat Hazards Earth Syst Sci 9(6):1763–1773

    Article  Google Scholar 

  • Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci Lett 275:221–232

    Article  Google Scholar 

  • Mohanty W, Walling MY, Nath S, Pal I (2007) First order seismic microzonation of Delhi, India using geographic information system (GIS). Nat Hazards 40(2):245–260

    Article  Google Scholar 

  • MonaLisa, Khwaja AA, Jan MQ (2007) Seismic hazard assessment of the NW Himalayan fold-and-thrust belt, Pakistan, using probabilistic approach. J Earthq Eng 11(2):257–301

    Article  Google Scholar 

  • Monsalve G et al (2006) Seismicity and one-dimensional velocity structure of the Himalayan collision zone: earthquakes in the crust and upper mantle. J Geophys Res 111:B10301

    Article  Google Scholar 

  • Mora CS, Vahrson W-G (1994) Macrozonation methodology for landslide hazard determination. Bull Assoc Eng Geol xxxi(1):49–58

    Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railw Tech Res Inst Q Rep 30(1):25–33

    Google Scholar 

  • Nakamura Y (2000) Clear identification of fundamental idea of Nakamura’s technique and its applications, Proc. 12th World Conf. Earthq. Engg., Auckland, New Zealand

  • Nakata T, Otsuki K, Khan SH (1990) Active faults, stress field and plate motion along Indo-Eurasian plate boundary. Tectonophysics 181:83–95

    Article  Google Scholar 

  • Nath SK (2004) Seismic hazard mapping and microzonation in the Sikkim Himalaya through GIS integration of site effects and strong ground motion attributes. Nat Hazards 31(2):319–342

    Article  Google Scholar 

  • Nath SK, Vyas M, Pal I, Sengupta PCB (2005) A seismic hazard scenario in the Sikkim Himalaya from seismotectonics, spectral amplification, source parameterization, and spectral attenuation laws using strong motion seismometry. J Geophys Res: Solid Earth. 110(B1)

  • Ni J, Barazangi M (1984) Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian Plate beneath the Himalaya. J Geophys Res 89:1147–1163

    Article  Google Scholar 

  • Owen LA et al (2008) Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94:1–9

    Article  Google Scholar 

  • Pal I et al (2008) Earthquake hazard zonation of Sikkim Himalaya using a GIS platform. Nat Hazards 45(3):333–377

    Article  Google Scholar 

  • Panahi M, Rezaie F, Meshkani SA (2014) Seismic vulnerability assessment of school buildings in Tehran city based on AHP and GIS. Nat Hazards Earth Syst Sci 14(4):969–979

    Article  Google Scholar 

  • Panizza M (1991) Geomorphology and seismic risk. Earth Sci Rev 31(1):11–20

    Article  Google Scholar 

  • Parvez IA, Vaccari F, Panza GF (2003) A deterministic seismic hazard map of India and adjacent areas. Geophys J Int 155(2):489–508

    Article  Google Scholar 

  • Pavlides SB, King GCP (1998) The 1995 Kozani-Grevena earthquake (N. Greece): an introduction. J Geodyn 26(2–4):171–173

    Article  Google Scholar 

  • Pike RJ (2000) Geomorphometry—diversity in quantitative surface analysis. Prog Phys Geogr 24:1–20

    Google Scholar 

  • Pittore M, Wieland M (2013) Toward a rapid probabilistic seismic vulnerability assessment using satellite and ground-based remote sensing. Nat Hazards 68(1):115–145

    Article  Google Scholar 

  • Raiverman V (2000) Foreland sedimentation in Himalayan tectonic regime: a relook at the orogenic processes. Bishen Singh Mahendra Pal Singh, Dehradun, 378 pp

    Google Scholar 

  • Rajendran K, Rajendran CP, Jain SK, Murty CVR, Arlekar JN (2000) The Chamoli earthquake, Garhwal Himalaya: field observations and implications for seismic hazard. Curr Sci 78(1):45–51

    Google Scholar 

  • Richart FE, Woods RD, Hall JR (1970) Vibration of soils and foundations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Robert HT (1982) Vp/Vs and lithology. Geophysics 47(3):336–344

    Article  Google Scholar 

  • Rodriguez-Marek A, Bray JD, Abrahamson NA (2001) An empirical geotechnical seismic site response procedure. Earthquake Spectra 17(1):65–87

    Article  Google Scholar 

  • Saaty TL, Vargas LG (2001) Models, methods, concepts & applications of the analytic hierarchy process. International series in operations research & management science. Springer, New York, p 333

    Book  Google Scholar 

  • Seekins LC, Wennerberg L, Margheriti L, Liu H-P (1996) Site amplification at five locations in San Francisco, California: a comparison of S waves, codas, and microtremors. Bull Seismol Soc Am 86(3):627–635

    Google Scholar 

  • Sheri M, John FC (2006) A comparison of site response techniques using weak-motion earthquakes and microtremors. Earthquake Spectra 22(1):169–188

    Article  Google Scholar 

  • Sibson RH (1989) Earthquake faulting as a structural process. J Struct Geol 11(1):1–14

    Article  Google Scholar 

  • Sinha-Roy S (1982) Himalayan Main Central Thrust and its implications for Himalayan inverted metamorphism. Tectonophysics 84:197–224

    Article  Google Scholar 

  • Som SK (ed) (2014) Seismological report on Sikkim earthquake of 18th September 2011. Bulletin series-B, 66. Geological Survey of India. Kolkata, 60 pp

  • Som SK et al (2008) Macroseismic survey of Sikkim earthquake, 14th February, 2006. J Geol Soc India 71:541–550

    Google Scholar 

  • Som SK, Datta A, Mohanty A, Chourasia RP (eds) (2014) Geoseismological report on Sikkim Earthquake of 18th September 2011, Bulletin Series-B, 66. Geological Survey of India, Kolkata

    Google Scholar 

  • Stafford P, Berrill J, Pettinga J (2009) New predictive equations for Arias intensity from crustal earthquakes in New Zealand. J Seismol 13(1):31–52

    Article  Google Scholar 

  • Stephenson DB (2000) Use of the “odds ratio” for diagnosing forecast skill. Weather Forecast 15:221–232

    Article  Google Scholar 

  • Tang C, Zhu J, Liang J (2009) Emergency assessment of seismic landslide susceptibility: a case study of the 2008 Wenchuan earthquake affected area. Earthq Eng Eng Vib 8(2):207–217

    Article  Google Scholar 

  • Valdiya KS (1976) Himalayan transverse faults and folds and their parallelism with subsurface structures of north Indian plains. Tectonophysics 32:353–386

    Article  Google Scholar 

  • van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131

    Article  Google Scholar 

  • Wald DJ, Allen TI (2007) Topographic slope as a proxy for seismic site conditions and amplification. Bull Seismol Soc Am 97(5):1379–1395

    Article  Google Scholar 

  • Wang Z (2010) Seismic hazard assessment: issues and alternatives. Pure Appl Geophys. doi:10.1007/s00024-010-0148-3

  • Wasowski J, Pierri V, Pierri P, Capolongo D (2002) Factors controlling seismic susceptibility of the Sele Valley slopes: the case of the 1980 Irpinia earthquake re-examined. Surv Geophys 23(6):563–593

    Article  Google Scholar 

  • Westen CJV, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131

    Article  Google Scholar 

  • Wieland M et al (2012) Estimating building inventory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source imaging. Soil Dyn Earthq Eng 36:70–83

    Article  Google Scholar 

  • Yeats RS, Sieh K, Allen CR (1997) The geology of earthquakes. Oxford University Press, New York

    Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

  • Yue L-F, Suppe J, Hung J-H (2005) Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw = 7.6). J Struct Geol 27(11):2058–2083

    Article  Google Scholar 

  • Yule GU (1900) On the association of attributes in statistics. Philos Trans R Soc Lond 194A:257–319

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Deputy Director General and HOD, GSI, NER for permitting to publish the manuscript. They also express their gratitude to the anonymous reviewer for valuable comments that improved the manuscript. The authors are also indebted to the local authorities for extending their help during data collection in field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Som.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Som, S.K., Dasarwar, P., Mohan, M. et al. Comparing seismic susceptibility models of the Himalayan terrain. J Seismol 20, 827–863 (2016). https://doi.org/10.1007/s10950-016-9562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-016-9562-z

Keywords

Navigation