Skip to main content

Advertisement

Log in

Normal and shear stresses acting on arbitrarily oriented faults, earthquake energy, crustal GPE change, and the coefficient of friction

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

A Letter to this article was published on 13 June 2014

Abstract

As usual, earthquake energy is defined as the total energy released from an earthquake, which is partitioned into radiated energy, friction energy, and rupture energy regardless of crustal gravitational potential energy (GPE) change. We analyze the energy and stress parameters in earthquake energy budget. For arbitrarily oriented faults, we deduce the formulas for calculating the normal and shear stresses acting on the fault under principal stresses. We show that shear stress is composed of horizontal and vertical shear stresses. Then, we provide the expressions for computing crustal GPE change and the coefficient of friction. The GPE change should be considered, except strike-slip faulting, when investigating earthquakes. Also, for various faulting types, we show that the ratio of differential stresses is related to the fault orientation and the relative magnitudes of stresses. Finally, “12 May, 2008, Wenchuan, Sichuan, China, MW 7.9 Earthquake” is cited to analyze and calculate various energy/stress parameters and the coefficient of friction. Our result of GPE change coincides with the post-event field observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abercrombie RE, McGarr A, Toro GD & Kanamori H (2006) Preface. In: Earthquakes: radiated energy and the physics of faulting. Geophys Monogr Ser 170: 327 pp

  • Aki K (1966) Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. Part 2. Estimation of earthquake moment, from the G wave spectrum. Bull Earthq Res Inst Tokyo Univ 44:73–88

    Google Scholar 

  • Aki K, Richards PG (1980) Quantitative seismology: theory and methods. Freeman, San Francisco, pp 63–121

    Google Scholar 

  • Angelier J (1979) Determinition of the mean principal directions of stress for a given fault population. Tectonophysics 56:T17–T26

    Article  Google Scholar 

  • Angelier J (2002) Inversion of earthquake focal mechanism to obtain the seismotectonic stress IV—a new method free of choice among the nodal planes. Geophys J Int 150:588–609

    Article  Google Scholar 

  • Barth A, Wenzel F, Giardini D (2007) Frequency sensitive moment tensor inversion for light to moderate earthquakes in eastern Africa. Geophys Res Lett 34:L15302

    Article  Google Scholar 

  • Beeler NM (2007) Laboratory-observed faulting in intrinsically and apparently weak materials: strength, seismic coupling, dilatancy, and pore-fluid pressures. In: Thrust faults. Dixon T and Moore C (eds) The Seismologenic Zone of Subduction. Columbia University Press

  • Bott M (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117

    Article  Google Scholar 

  • Bizzarri A (2010) On the relations between fracture energy and physical observables in dynamic earthquake models. J Geophys Res 115:B10307. doi:10.1029/2009JB007027

    Article  Google Scholar 

  • Bizzarri A (2011) On the deterministic description of earthquakes. Rev Geophys 49:RG3002. doi:10.1029/2011RG000356

    Article  Google Scholar 

  • Bizzarri A, Belardinelli ME (2008) Modelling instantaneous dynamic triggering in a 3-D fault system: application to the 2000 June South Iceland seismic sequence. Geophys J Int 173:906–921. doi:10.1111/j.1365-246X.2008.03765.x

    Article  Google Scholar 

  • Byerlee JD (1978) Frictions of rocks. Pure Appl Geophys 116:615–629

    Article  Google Scholar 

  • Carena S, Suppe L, Kao H (2004) Lack of continuity of the San Andreas Fault in southern California: three dimensional fault models and earthquake scenarios. J Geophys Res. doi:10.1029/2003JB002643

    Google Scholar 

  • Brune JN, Henry TL, Roy RF (1969) Heat flow, stress, and rate of slip along the San Andreas Fault, California. J Geophys Res 74:3821–3827

    Article  Google Scholar 

  • Chao BF, Gross RS, Dong D-N (1995) Changes in global gravitational energy induced by earthquakes. Geophys J Int 122:784–789

    Article  Google Scholar 

  • Chinnery MA (1964) The strength of the earth’s crust under horizontal shear stress. J Geophys Res 69(10):2085–2089

    Article  Google Scholar 

  • Choy GL, Boatwright JL (1995) Global patterns of radiated seismic energy and apparent stress. J Geophys Res 100(B9):18,201–18,228

    Article  Google Scholar 

  • Dahlen AF (1977) The balance of energy in earthquake faulting. Geophys J R Astron Soc 48:239–261

    Article  Google Scholar 

  • Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, Princeton, 1025pp

    Google Scholar 

  • Dahm T, Krüger F (1999) High-degree moment tensor inversion using far-field broad-band recordings: theory and evaluation of method with application to 1994 Bolivia deep earthquake. Geophys J Int 137:35–50

    Article  Google Scholar 

  • Dziewonski AM, Anderson DJ (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Dziewonski AM, Chou T-A, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86:2825–2852

    Article  Google Scholar 

  • Eshelby JD (1969) The elastic field of a crack extending non-uniformly under general anti-plane loading. J Mech Phys Solids 17:177–199

    Article  Google Scholar 

  • Fay N, Humphreys E (2006) Dynamics of the Salton blocks: absolute fault strength and crust–mantle coupling in Southern California. Geology 34(4):261–264

    Article  Google Scholar 

  • Fialko Y, Rivera L, Kanamori H (2005) Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas Fault. Geophys J Int 160(2):527–532

    Article  Google Scholar 

  • Flesch LM, Kreemer C (2010) Gravitational potential energy and regional stress and strain rate fields for continental plateaus: examples from the central Andes and Colorado Plateau. Tectonophysics 428:182–192

    Article  Google Scholar 

  • Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J Geophys Res 89:9305–9320

    Article  Google Scholar 

  • Gao Q, Wang C, Zhang Y & Ding L (2010) In-situ stress research on prediction and analysis of strong earthquake—repeated in-situ stress measurement on the seismic faults before and after the Wenchuan earthquake of MS 8.0, Special session 1—Wenchuan earthquake: one year after, 2021. http://people.tamu.edu/~bduan/Duan_2009JB006750.pdf

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350

    Article  Google Scholar 

  • Hardebeck JL, Hauksson E (1999) Role of fluids in faulting inferred from stress field signatures. Science 285(5425):236–239

    Article  Google Scholar 

  • Hardebeck JL, Hauksson E (2001) Crustal stress field in southern California and its implications for fault mechanics. J Geophys Res 106(B10):21859–21882

    Article  Google Scholar 

  • Hardebeck JL, Michael A (2004) Stress orientations at intermediate angels to the San Andreas Fault, California. J Geophys Res. doi:10.1029/2004JB003239

    Google Scholar 

  • Hickman S (2009) Structure and properties of the San Andreas Fault at seismogenic depths: recent results from SAFOD experiments. Lectures at University of Colorado at Boulder. http://cires.colorado.edu/events/lectures/hickman/

  • Hickman SH, Zoback MD, Healy JH (1998) Continuation of a deep borehole stress measurement profile near the San Andreas fault, 1. Hydraulic fracturing stress measurements at Hi Vista, Mojave Desert, California. J Geophys Res 93(B12):15183–15195

    Article  Google Scholar 

  • Hsu S-K, Lo C-L (2004) Change of crustal gravitational potential energy in the Taiwan orogen by the Chi-Chi earthquake sequence. Earth Planet Sci Lett 222:573–581

    Article  Google Scholar 

  • Ide S, Beroza GC (2001) Does apparent stress vary with earthquake size? Geophys Res Lett 28(1):3349–3352

    Article  Google Scholar 

  • Jaeger JC (1956) Elasticity, fracture, and flow. Wiley, New York

    Google Scholar 

  • Jaeger JC (1969) Elasticity, fracture, and flow, 3rd edn. Methuen, London

    Google Scholar 

  • Jost ML, Büßelberg T, Jost Ö, Harjes H (1998) Source parameters of injection-induced micro-earthquakes at 9 km depth at the KTB deep drilling site, Germany. Bull Seismol Soc Am 88(3):815–832

    Google Scholar 

  • Jost ML, Herman RB (1989) A student’s guide to and review of moment tensors. Seism Res Lett 60:37–57

    Google Scholar 

  • Kanamori H (2001) Energy budget of earthquakes and seismic efficiency, chapter 3. In: Earthquake thermodynamics and phase transformation in the earth’s interior. Academic Press: New York.

  • Kanamori H, Rivera L (2006) Energy partitioning during an earthquake, in earthquakes: radiated energy and the physics of faulting. Geophys Monogr Ser 170:3–14

    Article  Google Scholar 

  • Keys WS, Wolff RG, Bredehoeft JD, Shuter E, Healy JH, Healy JH (1979) In-situ stress measurements near the San Andreas Fault in Central California. J Geophys Res 84(B4):1583–1591

    Article  Google Scholar 

  • Khattri K (1973) Earthquake focal mechanism studies—a review. Earth Sci Rev 9:19–63

    Article  Google Scholar 

  • Kisslinger C, Bowman JR, Koch K (1981) Procedures for computing focal mechanisms from local (SV/P) data. Bull Seism Soc Am 59:591–601

    Google Scholar 

  • Kostrov BV (1966) Unsteady propagation of longitudinal shear cracks. J Appl Math Mech Engl Transl 30:1241–1248

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice-Hall, Upper Saddle River, p 232

    Google Scholar 

  • Lachenbruch AH (1986) Simple models for the estimation and measurement of frictional heating by an earthquake. US Geol Surv Open-File Rep 86–508:13

    Google Scholar 

  • Lachenbruch AH (1988) The stress heat-flow paradox and thermal results from Cajon Pass. Geophys Res Lett 15(9):981–984

    Article  Google Scholar 

  • Lachenbruch AH & McGarr A (1990) Chapter 10: stress and heat flow. In: Wallace RE (ed) The San Andreas fault system, California. US Geological Survey, Professional Paper 1515. http://3dparks.wr.usgs.gov/pp1515/chapter10.html (2009)

  • Lachenbruch AH, Sass JH (1980) Heat flow and energetics of the San Andreas Fault Zone. J Geophys Res 85:6185–6222

    Article  Google Scholar 

  • Liu-Zeng J, Zhang Z, Wen L, Tapponnier P, Sun J, Xing X, Hu G, Xu Q, Zeng L, Ding L, Ji C, Hudnut KW, van der Woerd J (2009) Co-seismic rupture of the 12 May 2008, MS 8.0 Wenchuan earthquake, Sichuan: east–west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth Planet Sci Lett 286(3–4):355–370

    Article  Google Scholar 

  • Locker DA, Okubo PG (1983) Measurements of frictional heating in granite. J Geophys Res 88(B5):4313–4320

    Article  Google Scholar 

  • Lund B, Townwnd J (2007) Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophys J Int 170:1328–1335

    Article  Google Scholar 

  • Mayeda K, Malagnini L (2009) Apparent stress and corner frequency variations in the 1999 Taiwan (Chi-Chi) sequence: evidence for a stepwise increase at MW ~5.5. Geophys Res Lett. doi:10.1029/2009GL037421

    Google Scholar 

  • McGarr A (1980) Some constraints on levels of shear stress in the crust from observations and theory. J Geophys Res 85(B11):6231–6238

    Article  Google Scholar 

  • McGarr A (1988) On the lithosphere stress in the absence of applied tectonic forces. J Geophys Res 93(B11):13609–13617

    Article  Google Scholar 

  • McGarr A, Gay NC (1978) State of stress in the earth’s crust. Annu Rev Earth Planet Sci 6:405–436

    Article  Google Scholar 

  • McGarr A (1999) On relating apparent stress to the stress causing earthquake fault slip. J Geophys Res 104(B2):3003–3011

    Article  Google Scholar 

  • McGarr A, Zoback MD, Hanks TC (1982) Implications of an elastic analysis of in situ stress measurements near the San Andreas fault. J Geophys Res 87:7797–7806

    Article  Google Scholar 

  • Michael A (1987) Use of focal mechanisms to determine stress: a control study. J Geophys Res 92:11,517–11,526

    Google Scholar 

  • Michael A (1990) Energy constraints on kinematic models of oblique faulting—Loma-Prieta versus Parkfield-Coalinga. Geophys Res Lett 9:1453–1456

    Article  Google Scholar 

  • Morrow C, Radney B & Byerlee J (1992) Chapter 3 frictional strength and the effective pressure law of montmorillonite and illite clays. In: Fault mechanics and transport properties of rocks. Academic Press. http://earthquake.usgs.gov/research/physics/lab/Frictional_strength.pdf (2009)

  • Mount V, Suppe J (1987) State of stress near the San Andreas fault: implications for wrench tectonics. Geology 15:1143–1146

    Article  Google Scholar 

  • Okamoto T, Tanimoto T (2002) Crustal gravitational energy change caused by Earthquakes in the western United States and Japan. Earth Planet Sci Lett 195:17–27

    Article  Google Scholar 

  • Pittarello L, Di Toro G, Bizzarri A, Pennacchioni G, Hadizadeh J, Cocco M (2008) Energy partitioning during seismic slip in pseudotachylytes-bearing faults (Gole Larghe Fault, Adamello, Italy). Earth Planet Sci Lett 269:131–139. doi:10.1016/j.epsl.2008.01.052

    Article  Google Scholar 

  • Rivera L, Cisternas A (1990) Stress tensor and fault plane solutions for a population of earthquakes. Bull Seism Soc Am 80:600–614

    Google Scholar 

  • Rivera L, Kanamori H (2002) Spatial heterogeneity of tectonic stress and friction in the crust. Geophys Res Lett. doi:10.1029/2001GL013803

    Google Scholar 

  • SAFOD (2008–2010) Please see San Andreas Fault Observatory at Depth conducted measurements and experiments in 2008–2010 at its web site: http://www.safod.com

  • Savage JC, Walsh JB (1978) Gravitational energy and faulting. Bull Seism Soc Am 68(6):1613–1622

    Google Scholar 

  • Scholz CH (2000) Evidence for a strong San Andreas fault. Geology 28(2):163–166

    Article  Google Scholar 

  • Stein S, Wysession M (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell, New York

    Google Scholar 

  • Tanimoto T, Okamoto T (2000) Change of crustal potential energy by earthquakes: an indicator for extensional and compressional tectonics. Geophys Res Lett 27:2313–2316

    Article  Google Scholar 

  • Townend J, Zoback M (2000) How faulting keeps the crust strong. Geology 28:399–4402

    Article  Google Scholar 

  • Townend J, Zoback M (2004) Regional tectonic stress near the San Andreas fault in central and southern California. Geophys Res Lett 31:Art No. L15S11. doi:10.1029/2003GL018918

    Article  Google Scholar 

  • Townend J, Zoback MD (2006) Stress, strain, and mountain building in central Japan. J Geophys Res 111:B03411

    Article  Google Scholar 

  • USGS (2009) Seismic moment. http://earthquake.usgs.gov/learning/glossary.php?term=seismic_moment or http://earthquake.usgs.gov/regional/qfaults/glossary.php

  • USGS (2008) Magnitude 7.9 Eastern Sichuan, China, 2008 http://neic.usgs.gov/neis/eq_depot/2008/eq_080512/neuc_ryan_hry.html

  • Vavryčuk V (2011) Tensile earthquakes: theory, modeling, and inversion. J Geophys Res 116:B12320. doi:10.1029/2011JB008770

    Article  Google Scholar 

  • Venkataraman A, Kanamori H (2004) Observational constraints on the fracture energy of subduction zone earthquakes. J Geophys Res 109:B05302

    Article  Google Scholar 

  • Wu M, Zhang Y, Liao C, Chen Q, Ma Y, Wu J, Yan J, Ou M (2009) Preliminary results of in-situ stress measurements along the Longmenshan fault zone after the Wenchuan MS 8.0 earthquake. Acta Geol Sin 83(4):746–753

    Article  Google Scholar 

  • Xu Z, Ji S, Li H, Hou L, Fu X, Cai Z (2009) Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes 31(3):291–301

    Google Scholar 

  • Yamashita T (2000) Generation of microcracks by dynamic shear rupture and its effects on rupture growth and elastic wave radiation. Geophys J Int 143:395–406

    Article  Google Scholar 

  • Zoback MD (1992) First- and second-order pattern of stress in the lithosphere: the World Map project. J Geophys Res 97:11,703–11,728

    Google Scholar 

  • Zoback MD, Haimson BC (eds) (1983) Hydraulic fracturing stress measurements. National Academy Press, Washington

    Google Scholar 

  • Zoback MD, Tsukahara H, Hickman SH (1980) Stress measurements at depth in the vicinity of the San Andreas Fault: implications for the magnitude of shear stress at depth. J Geophys Res 85(B11):6157–6173

    Article  Google Scholar 

  • Zoback MD, Zoback ML (1980) State of stress in the conterminous United States. J Geophys Res 85(B11):6113–6156

    Article  Google Scholar 

  • Zoback MD, Zoback ML, Mount VS, Suppe J, Eaton JP, Healy JH, Oppenheimer DH, Reasenberg PA, Jones LM, Raleigh CB, Wong LG, Scotti O, Wentworth CM (1987) New evidence on the state of stress of the San Andreas fault system. Science 228(4830):1105–1111

    Article  Google Scholar 

  • Zoback MD, Barton CA, Brudy M, Castillo DA, Finkbeiner T, Grollimund BR, Moos DB, Peska P, Ward CD, Wiprut DJ (2003) Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Min Sci 40:1049–1076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Zhu.

Additional information

A comment to this article is available at http://dx.doi.org/10.1007/s10950-014-9443-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, P.P. Normal and shear stresses acting on arbitrarily oriented faults, earthquake energy, crustal GPE change, and the coefficient of friction. J Seismol 17, 985–1000 (2013). https://doi.org/10.1007/s10950-013-9367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-013-9367-2

Keywords

Navigation