Skip to main content
Log in

Experimental and Numerical Analysis of Equivalent Elastic Properties for Bi-2212 and YBCO Conductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

For mechanical design and optimization of high field HTS magnet, predicting elastic properties of Bi-2212 and YBCO conductors was of great importance. Experimental, numerical, and analytical methods could be used to predict the elastic properties of Bi-2212 and YBCO conductors. Due to the limitation of experiment, the elastic properties along a length direction of Bi-2212 and YBCO conductors were obtained by a tensile test. In this work, the numerical homogenization based on a finite element method was used for predicting the other elastic constants of Bi-2212 and YBCO conductors, and the analytical homogenization was adopted for the further validation of the numerical results. Compared with the measured data, the prediction of numerical homogenized approach was feasible. The analytical and numerical results were basically in accordance with experimental data, demonstrating the feasibility of numerical approach to predict the elastic properties of Bi-2212 conductors as well as the two-step analytical method to predict the elastic properties of YBCO conductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Obradors, X., Puig, T.: Supercond. Sci. Technol. 27, 044003 (2014)

    Article  ADS  Google Scholar 

  2. Melhem, Z., Ball, S., Chappell, S.: Physics Procedia. 36, 805 (2012)

    Article  ADS  Google Scholar 

  3. Melhem, Z., Ball, S., Jokinen, A., Chappell, S.P.G.: IEEE Trans. Appl. Supercond. 23, 4603104 (2013)

    Article  Google Scholar 

  4. Zhang, M., Yuan, W., Hilton, D.K., Canassy, M.D., Trociewitz, U.P.: Supercond. Sci. Technol. 27, 095010 (2014)

    Article  ADS  Google Scholar 

  5. Choi, Y.S., Kim, D.L., Shin, D.W.: IEEE Trans. Appl. Supercond. 22, 4701104 (2012)

    Article  Google Scholar 

  6. Mbaruku, A.L., Le, Q.V., Song, H., Schwartz, J.: Supercond. Sci. Technol. 23, 115014 (2010)

    Article  ADS  Google Scholar 

  7. Lombardo, V., Barzi, E., Turrioni, D., Zlobin, A.V.: IEEE Trans. Appl. Supercond. 21, 3247 (2011)

    Article  ADS  Google Scholar 

  8. Godeke, A., Acosta, P., Cheng, D., Dietderich, D.R., Mentink, M.G.T., Prestemon, S.O., Sabbi, G.L., Meinesz, M., Hong, S., Huang, Y., Miao, H., Parrell, J.: Supercond. Sci. Technol. 23, 034022 (2010)

    Article  ADS  Google Scholar 

  9. Zhang, S., Li, C., Hao, Q., Ma, X., Lu, T., Zhang, P.: Supercond. Sci. Technol. 28, 045014 (2015)

    Article  ADS  Google Scholar 

  10. Li, C., Zhang, S., Gao, L., Hao, Q., Bai, L., Zhang, P.: J. Mater. Sci.: Mater. Elec. 26, 3583 (2015)

    Google Scholar 

  11. Song, H., Brownsey, P., Zhang, Y., Waterman, J., Fukushima, T., Hazelton, D.: IEEE Trans. Appl. Supercond. 23, 4600806 (2013)

    Article  Google Scholar 

  12. Hazelton, D.W., Selvamanickam, V., Duval, J.M., Larbalestier, D.C., Markiewicz, W.D., Weijers, H.W., Holtz, R.L.: IEEE Trans. Appl. Supercond. 19, 2218 (2009)

    Article  ADS  Google Scholar 

  13. Boso, D.P., Lefik, M., Schrefler, B.A.: Cryogenics 45, 259 (2005)

    Article  ADS  Google Scholar 

  14. Sun, W., Tzeng, J.T.: Comp. Struc. 58, 411–421 (2002)

    Article  Google Scholar 

  15. Pes, C., Devaux, M., Mayri, C., Rey, J.M.: IEEE Trans. Appl. Supercond. 24, 4001105 (2014)

    Article  Google Scholar 

  16. Meaud, J., Hulbert, G.M.: J. Comp. Mater. 47, 3237 (2013)

    Article  Google Scholar 

  17. Gou, X., Shen, Q.: Phys. C 475, 5 (2012)

    Article  ADS  Google Scholar 

  18. Gou, X., Zhou, X.: J. Supercond. Nov. Magn. 26, 2115 (2013)

    Article  Google Scholar 

  19. Dai, C., Liu, B., Qin, J., Liu, F., Wu, Y., Zhou, C.: IEEE Trans. Appl. Supercond. 25, 6400304 (2015)

    Google Scholar 

  20. Dizon, J.R.C., Gorospe, A.B., Shin, H.S.: Supercond. Sci. Technol. 27, 055023 (2014)

    Article  ADS  Google Scholar 

  21. Boso, D.P., Lefik, M., Schrefler, B.A.: Cryogenics 46, 569 (2006)

    Article  ADS  Google Scholar 

  22. Özkurt, B.: J. Supercond. Nov. Magn. 27, 2407 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Magnetic Confinement Fusion Science Program (Grant Nos. 2011GB112001 and 2013GB110001), the Program of International S&T Cooperation (Grant No. 2013DFA51050), the National Nature Science Foundation of China (Grant Nos. 51271155, 51377138, and 51302231), and the Fundamental Research Funds for the Central Universities (SWJTU2682016ZDPY10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Chen, W., Zhang, H. et al. Experimental and Numerical Analysis of Equivalent Elastic Properties for Bi-2212 and YBCO Conductors. J Supercond Nov Magn 30, 885–891 (2017). https://doi.org/10.1007/s10948-016-3907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3907-2

Keywords

Navigation