Skip to main content
Log in

Analysis of the Magnetic Susceptibility as a Function of Temperature for the α, β and γ Phases of Oxygen

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We analyse the magnetic susceptibility χ as a function of temperature (zero pressure) for the transitions of α- β, β- γ and γ-liquid below and above the transition temperatures for oxygen according to a power-law formula. The observed data are used from the literature, and the values of the critical exponents for the magnetic susceptibility are deduced close to the phase transitions in oxygen. Our exponent values give a logarithmic singularity for the magnetic susceptibility χ in the vicinity of T c as in the specific heat at constant magnetic field, C M. Our exponent values (γ≃ 0) are not in agreement with the predictions for the magnetic susceptibility (γ≃ 1) of some theoretical models, which undergo essentially a second order transition. Our analysis gives an indication that the α- β transition is a weak first order (less discontinuity in χ), whereas the β- γ and γ-liquid transitions are closer to a first order (more discontinuous behaviour than the α- β transition in oxygen). The effect of the magnetic interactions on the α- β, β- γ and γ-liquid transitions in oxygen is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kobashi, K., Klein, M.L., Chandrasekharan, V.: J. Chem. Phys. 71, 843 (1979)

    Article  ADS  Google Scholar 

  2. Krupskii, I. N., Prokhvatilov, A. I., Freiman, Yu, Erenberg, A.: Sov. J. Low Temp. Phys. 5, 130 (1979)

    Google Scholar 

  3. Nicol, M., Hirsch, K. R., Holzapfel, W. B.: Chem. Phys. Lett. 68, 49 (1979)

    Article  ADS  Google Scholar 

  4. Schiferl, D., Cromer, D. T., Schwalbe, L. A., Mills, R. L.: ActaCryst. B 39, 153 (1983)

    Google Scholar 

  5. Swanson, B. I., Agnew, S. F., Jones, L. H., Mills, R. L., Schiferl, D.: J. Phys. Chem. 87, 2463 (1983)

    Article  Google Scholar 

  6. Hochheimer, H. D., Jodl, H. J., Henkel, W., Bolduan, F.: Chem. Phys. Lett. 106, 79 (1984)

    Article  ADS  Google Scholar 

  7. Akahama, Y., Kawamura, H.: Phys. Rev. B 54, R 15602 (1996)

    Article  ADS  Google Scholar 

  8. Gorelli, F. A., Ulivi, L., Santoro, M., Bini, R.: Phys. Rev. Lett. 83, 4093 (1999)

    Article  ADS  Google Scholar 

  9. Desgreniers, S., Weck, G., Loubeyre, P.: Joint 20th AIRAPT – 43th EHPRG, June 27 - July 1. Karlsruhe / Germany (2005)

  10. Yan-Huti, L., Fu-Bo, T., Yang-Ming, M. A., Zhi, H., Tian, C., Bing-Bing, L., Guang-Tian, Z.: Chin. Phys. Lett. 25, 2610 (2008)

    Article  ADS  Google Scholar 

  11. Hochheimer, H. D., Jodl, H. J., Bolduan, F.: J. Phys. (France) Colloque C 8, 195 (1984)

    Google Scholar 

  12. Akahama, Y., Kawamura, H., Häusermann, D., Hanfland, M., Shimomura, O.: Phys. Rev. Lett. 74, 4690 (1995)

    Article  ADS  Google Scholar 

  13. Jodl, H. J., Bolduan, F., Hochheimer, H. D.: Phys. Rev. B 31, 7376 (1985)

    Article  ADS  Google Scholar 

  14. Akahama, Y., Kawamura, H., Shimomura, D.: Phys. Rev. B 64, 054105 (2001)

    Article  ADS  Google Scholar 

  15. Kreutz, J., Medvedev, S. A., Jodl, H. J.: Phys. Rev. B 72, 214115 (2005)

    Article  ADS  Google Scholar 

  16. Goncharenko, I. N.: J. Phys.:Condens. Matter 17, 947 (2005)

    ADS  Google Scholar 

  17. Gorelli, F., Santoro, M., Bini, R., Ulivi, L.: Phys. Rev. B 77, 132103 (2008)

    Article  ADS  Google Scholar 

  18. Helmy, A., Kobashi, K., Etters, R. D.: J. Chem. Phys. 80, 2782 (1984)

    Article  ADS  Google Scholar 

  19. Yurtseven, H., Şenol, M. G.: Calphad 51, 272 (2015)

    Article  Google Scholar 

  20. Alikhanov, R. A: JETP Lett 5, 349 (1967)

    ADS  Google Scholar 

  21. Slyusarev, V. A., Freiman, Y. A., Yankelevich, R. P.: Sov. J. Low Temp. Phys. 7, 265 (1981)

    Google Scholar 

  22. Meier, R. J., Schinkel, C. J., de Visser, A.: J. Phys C : Solid State Phys. 15, 1015 (1982)

    Article  ADS  Google Scholar 

  23. Kuchta, B., Luty, T., Meier, R. J.: J. Phys. C : Solid State Phys. 20, 585 (1987)

    Article  ADS  Google Scholar 

  24. LeSar, R., Etters, R. D: Phys. Rev. B 37, 5364 (1988)

    Article  ADS  Google Scholar 

  25. Stephens, P. W., Birgeneau, R. J., Majkrzak, C. F., Shirane, G.: Phys. Rev. B 28, 452 (1983)

    Article  ADS  Google Scholar 

  26. Jansen, A. P. J., van der Avoird, A.: J. Chem. Phys. 86, 3583 (1987)

    Article  ADS  Google Scholar 

  27. Santoro, M., Gorelli, F. A., Ulivi, L., Bini, R., Medvedev, S., Brodyansky, A. P., Jodl, H. J.: J. Low Temp. Phys. 122, 323 (2001)

    Article  ADS  Google Scholar 

  28. Santoro, M., Gorelli, F. A., Ulivi, L., Bini, R., Jodl, H. J.: Phys. Rev. B 64, 064428 (2001)

    Article  ADS  Google Scholar 

  29. Gebauer, R., Serra, S., Chiarotti, G. L., Scandolo, S., Baroni, S., Tosatti, E.: Phys. Rev. B 61, 6145 (2000)

    Article  ADS  Google Scholar 

  30. Freiman, Y. A., Jodl, H. J.: Phys. Rep. 401, 1 (2004)

    Article  ADS  Google Scholar 

  31. Fujihisa, H., et al.: Phys. Rev. Lett. 97, 08563 (2006)

    Article  Google Scholar 

  32. Militzer, B., Hemley, R. J.: Nature 443, 150 (2006)

    Article  ADS  Google Scholar 

  33. Lundegaard, L. F., et al.: Nature 443, 201 (2006)

    Article  ADS  Google Scholar 

  34. Goncharenko, I. N.: Phys. Rev. Lett. 94, 205701 (2005)

    Article  ADS  Google Scholar 

  35. Ma, Y., Oganov, A. R., Glass, C. W.: Phys. Rev. B 76, 064101 (2007)

    Article  ADS  Google Scholar 

  36. Weck, G., Desgreniers, S., Loubeyre, P., Mezouar, M.: Phys. Rev. Lett. 102, 255503 (2009)

    Article  ADS  Google Scholar 

  37. Ochoa-Calle, A. J., Zicovich-Wilson, C. M., Ramirez-Solis, A.: Phys. Rev. B 92, 085148 (2015)

    Article  ADS  Google Scholar 

  38. Ochoa-Calle, A. J., Zicovich-Wilson, C. M., Hernandez-Lamoneda, R., Ramirez-Solis, A.: J. Chem. Theory Comput. 11, 1195 (2015)

    Article  Google Scholar 

  39. Goncharenko, I. N., Makarova, O. L., Ulivi, L.: Phys. Rev. Lett. 93, 055502 (2004)

    Article  ADS  Google Scholar 

  40. Yurtseven, H., Kilit Doğan, E., Emre, B., Acet, M.: J. Supercond. Nov. Magn. 28, 873 (2015)

    Article  Google Scholar 

  41. Stanley, H. E.: Introduction to Phase Transitions and Critical Phenomena. Clarendon Press, Oxford (1971)

    Google Scholar 

  42. Binner, J. J., Dowrick, N. J., Fisher, A. J., Newman, M. E. J.: The Theory of Critical Phenomena: An Introduction to the Renormalization Group. Oxford University Press Inc., New York (1992)

    MATH  Google Scholar 

  43. Collins, M. F.: Proc. Phys. Soc. 89, 415 (1966)

    Article  ADS  Google Scholar 

  44. Fagerstroem, C. H., Hallett, H. C. H.: Ann. Acad. Sci. Fennicae A6(210), 210 (1966)

    Google Scholar 

  45. Morishige, K., Ogisu, Y.: J. Chem. Phys. 114, 7166 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yurtseven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurtseven, H., Avcı, C. Analysis of the Magnetic Susceptibility as a Function of Temperature for the α, β and γ Phases of Oxygen. J Supercond Nov Magn 30, 831–838 (2017). https://doi.org/10.1007/s10948-016-3804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3804-8

Keywords

Navigation