Skip to main content
Log in

Critical Current Density Through Grain Boundaries in High-Temperature Superconductors

  • Letter
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, a theoretical study is proposed based on the assumption that the vortices on low-angle grain boundaries (GBs) in high-temperature superconductor (HTS) are mixed Abrikosov-Josephson (AJ) vortices. The critical current density through GB is obtained on the basis of the Bean critical model and the assumption that the periods of AJ vortices coincide with the ones of Abrikosov (A) vortices. The model also enables us to calculate J c of HTS with an inclined GB. In addition, the effect of strain on critical current density is also taken into account in this model by considering the strain dependence of deparing current density within GB. There is a good agreement of our results with the classical power-law expression. The model proposed in this work can be used for simultaneous studies of the effects of misorientation angles, GB-inclined angles, and applied fields on the critical current density of polycrystalline HTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dimos, D., Chaudhari, P., Mannhart, J., LeGoues, F.K.: Phys. Rev. Lett. 61, 219 (1988)

    Article  ADS  Google Scholar 

  2. Hirth, J.B., Lothe, J.: Theory of Dislocations. McGraw-Hill, New York (1968)

    Google Scholar 

  3. Sutton, A.P., Balluffi, R.W.: Interfaces in Crystalline Materials. Clarendon, Oxford (1995)

    Google Scholar 

  4. Chaudhari, P., Dimos, D., Mannhart, J.: Critical currents in single-crystal and bicrystal films. In: Earlier and Recent Aspects of Superconductivity. Springer (1990)

  5. Gurevich, A., Pashitskii, E.A.: Phys. Rev. B 57, 13878 (1998)

    Article  ADS  Google Scholar 

  6. Gurevich, A.: Phys. Rev. B 65, 214531 (2002)

    Article  ADS  Google Scholar 

  7. Gurevich, A., et al.: Phys. Rev. Lett. 88, 097001 (2002)

    Article  ADS  Google Scholar 

  8. Diaz, A., et al.: Phys. Rev. Lett. 80, 3855 (1998). Phys. Rev. B 58, R2960 (1998)

    Article  ADS  Google Scholar 

  9. Pan, V., et al.: Phys. Rev. B 73, 054508 (2006)

    Article  ADS  Google Scholar 

  10. Golovchanskiy, I.A., et al.: Supercond. Sci. Technol. 24, 105020 (2011)

    Article  ADS  Google Scholar 

  11. Hilgenkamp, H., Mannhart, J.: Rev. Mod. Phys. 74, 485–549 (2002)

    Article  ADS  Google Scholar 

  12. Gurevich, A., Cooley, L.D.: Phys. Rev. B 50(13), 563 (1994)

    Google Scholar 

  13. Polyanskii, A.A., et al.: Phys. Rev. B 53, 8687 (1996)

    Article  ADS  Google Scholar 

  14. Jooss, C., et al.: Rep. Prog. Phys. 65, 651 (2002)

    Article  ADS  Google Scholar 

  15. Prester, M.: Supercond. Sci. Technol. 11, 333–357 (1998)

    Article  ADS  Google Scholar 

  16. Yue, D., et al.: Appl. Phys. Lett. 103, 23 (2013)

    Article  Google Scholar 

  17. van der Laan, D., Ekin, J.: Appl. Phys. Lett. 90, 052506 (2007)

    Article  ADS  Google Scholar 

  18. Larbalestier, D.C., et al.: Nature London 414, 368 (2001)

    Article  ADS  Google Scholar 

  19. Cheggour, N., et al.: Appl. Phys. Lett. 83, 4223 (2003)

    Article  ADS  Google Scholar 

  20. Yong, H.D., Xue, F., Zhou, Y.H.: J. Appl. Phys. 110, 033905 (2011)

    Article  ADS  Google Scholar 

  21. Yong, H.D., Zhou, Y.H.: J. Appl. Phys. 111, 053929 (2012)

    Article  ADS  Google Scholar 

  22. Xue, F., Gou, X.: unpublished

  23. Xue, F., Zhang, Z., Zeng, J., Gou, X.: AIP Adv. 6, 055313 (2016)

    Article  ADS  Google Scholar 

  24. Lipavsky, P., et al.: Phys. Rev. B 78, 174516 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Natural Science Foundation of China (Nos. 11402073 and 11372096), the China Postdoctoral Science Foundation (No. 2013M531260), the Fund of Natural Science Foundation of Jiangsu Province (No. BK20130824), and the Program for Research Fund for the Doctoral Program of Higher Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F., Gu, Y. & Gou, X. Critical Current Density Through Grain Boundaries in High-Temperature Superconductors. J Supercond Nov Magn 29, 2711–2716 (2016). https://doi.org/10.1007/s10948-016-3729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3729-2

Keywords

Navigation