Skip to main content
Log in

Zero-Bias Shapiro Steps in Asymmetric Pinning Nanolandscapes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The coherent nonlinear dynamics of Abrikosov vortices in asymmetric pinning nanolandscapes is studied by theoretical modeling and combined microwave and dc electrical resistance measurements. The problem is considered on the basis of a single-vortex Langevin equation within the framework of a stochastic model of anisotropic pinning. When the distance over which Abrikosov vortices are driven during one half ac cycle coincides with one or a multiple of the nanostructure period, Shapiro steps appear in the current-voltage curves (CVCs) as a general feature of systems whose evolution in time can be described in terms of a particle moving in a periodic potential under combined dc and ac stimuli. While a dc voltage appears in response to the ac drive, the addition of a dc bias allows one to diminish the rectified voltage and eventually to change its sign when the extrinsic dc bias-induced asymmetry of the pinning potential starts to dominate the intrinsic one. This rectified negative voltage in the CVCs becomes apparent as zero-bias Shapiro steps, which are theoretically predicted and experimentally observed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brandt, E.H.: Rep. Progr. Phys. 58(11), 1465–1594 (1995)

    Article  ADS  Google Scholar 

  2. Dobrovolskiy, O.V.: Abrikosov fluxonics in washboard nanolandscapes. Physica C (2015). doi:10.1016/j.physc.2016.07.008

  3. Lee, C.-S., Janko, B., Derenyi, I., Barabasi, A.-L.: Nature 400, 337–340 (1999)

    Article  ADS  Google Scholar 

  4. Villegas, J.E., Savel’ev, S., Nori, F., Gonzalez, E.M., Anguita, J.V., Garcia, R., Vicent, J.L.: Science 302(5648), 1188–1191 (2003)

    Article  ADS  Google Scholar 

  5. De Souza Silva, C.C., Van de Vondel, J., Morelle, M., Moshchalkov, V.V.: Nature 440, 651–654 (2006)

    Article  ADS  Google Scholar 

  6. Zapata, I., Bartussek, R., Sols, F., Hänggi, P.: Phys. Rev. Lett. 77, 2292–2295 (1996)

    Article  ADS  Google Scholar 

  7. Ustinov, A.V., Coqui, C., Kemp, A., Zolotaryuk, Y., Salerno, M.: Phys. Rev. Lett. 93, 087001 (2004)

    Article  ADS  Google Scholar 

  8. Mizugaki, Y., Katoh, K.: J. Appl. Phys. 100(6)

  9. Plourde, B.L.T.: IEEE Trans. Appl. Supercond. 19, 3698–3714 (2009)

    Article  ADS  Google Scholar 

  10. Shklovskij, V.A., Dobrovolskiy, O.V.: Phys. Rev. B 84, 054515–1–12 (2011)

    Article  ADS  Google Scholar 

  11. Shklovskij, V.A., Dobrovolskiy, O.V.: Phys. Rev. B 78, 104526–1–12 (2008)

    Article  ADS  Google Scholar 

  12. Shklovskij, V.A., Sosedkin, V.V., Dobrovolskiy, O.V.: J. Phys. Cond. Matt. 26(2), 025703 (2014)

    Article  Google Scholar 

  13. Dobrovolskiy, O.V., Huth, M.: Thin Solid Films 520(18), 5985–5990 (2012)

    Article  ADS  Google Scholar 

  14. Dobrovolskiy, O.V., Begun, E., Huth, M., Shklovskij, V.A.: New J. Phys. 14(11), 113027–1–27 (2012)

    Article  ADS  Google Scholar 

  15. Dobrovolskiy, O.V., Hanefeld, M., Zörb, M., Huth, M., Shklovskij, V.A.: submitted

  16. Dobrovolskiy, O.V., Franke, J., Huth, M.: Meas. Sci. Technol. 26(3), 035502 (2015)

    Article  ADS  Google Scholar 

  17. Dobrovolskiy, O.V.: Supercond. Nov. Magnet. 28, 469–473 (2015)

    Article  Google Scholar 

  18. Dobrovolskiy, O.V., Huth, M.: Appl. Phys. Lett. 106(14), 142601–1–5 (2015)

    Article  ADS  Google Scholar 

  19. Dobrovolskiy, O.V., Huth, M., Shklovskij, V.A.: Appl. Phys. Lett. 107(16), 162603–1–5 (2015)

    Article  ADS  Google Scholar 

  20. Silva, E., Pompeo, N., Dobrovolskiy, O.: Vortices at microwaves. Walter De Gruyter Inc., Berlin (2017). Ch. 18

    Google Scholar 

  21. Lu, Q., Reichhardt, C.J.O., Reichhardt, C.: Phys. Rev. B 75, 054502 (2007)

    Article  ADS  Google Scholar 

  22. Shapiro, S.: Phys. Rev. Lett. 11, 80–82 (1963)

    Article  ADS  Google Scholar 

  23. Fiory, A.T.: Phys. Rev. Lett. 27, 501–503 (1971)

    Article  ADS  Google Scholar 

  24. Fiory, A.T.: Phys. Rev. B 7, 1881–1889 (1973)

    Article  ADS  Google Scholar 

  25. Martinoli, P., Daldini, O., Leemann, C., Stocker, E.: Solid State Commun. 17, 205–209 (1975)

    Article  ADS  Google Scholar 

  26. Martinoli, P., Daldini, O., Leemann, C., Van den Brandt, B.: Phys. Rev. Lett. 36, 382–385 (1976)

    Article  ADS  Google Scholar 

  27. Dayem, A.H., Wiegand, J.J.: Phys. Rev. 155, 419–428 (1967)

    Article  ADS  Google Scholar 

  28. Benz, S.P., Rzchowski, M.S., Tinkham, M., Lobb, C.J.: Phys. Rev. Lett. 64, 693–696 (1990)

    Article  ADS  Google Scholar 

  29. Van Look, L., Rosseel, E., Van Bael, M.J., Temst, K., Moshchalkov, V.V., Bruynseraede, Y.: Phys. Rev. B 60, R6998–R7000 (1999)

    Article  ADS  Google Scholar 

  30. Matsuura, T., Inagaki, K., Tanda, S.: Phys. Rev. B 79, 014304 (2009)

    Article  ADS  Google Scholar 

  31. Sivakov, A.G., Glukhov, A.M., Omelyanchouk, A.N., Koval, Y., Müller, P., Ustinov, A.V.: Phys. Rev. Lett. 91, 267001–1–4 (2003)

    Article  ADS  Google Scholar 

  32. Nawaz, S., Arpaia, R., Lombardi, F., Bauch, T.: Phys. Rev. Lett. 110, 167004 (2013)

    Article  ADS  Google Scholar 

  33. Reichhardt, C., Scalettar, R.T., Zim’anyi, G.T., Gronbech-Jensen, N.: Phys. Rev. B 61, R11914–R11917 (2000)

    Article  ADS  Google Scholar 

  34. Reichhardt, C., Reichhardt, C.J.O.: Phys. Rev. B 92, 224432 (2015)

    Article  ADS  Google Scholar 

  35. Gittleman, J.I., Rosenblum, B.: Phys. Rev. Lett. 16, 734–736 (1966)

    Article  ADS  Google Scholar 

  36. Coffey, M.W., Clem, J.R.: Phys. Rev. Lett. 67, 386–389 (1991)

    Article  ADS  Google Scholar 

  37. Pompeo, N., Silva, E.: Phys. Rev. B 78, 094503–1–10 (2008)

    Article  ADS  Google Scholar 

  38. Shklovskij, V.A.: Determination of coordinate dependence of the washboard pinning potential from the dynamic experiment with vortices. In: Procedings of the Fifth International Conference on Mathematical Modeling and Computer Simulation of Materials Technologies MMT-2008, p 2008, Ariel, Israel

  39. Shklovskij, V.A., Dobrovolskiy, O.V.: Microwave Absorption by Vortices in Superconductors with a Washboard Pinning Potential, pp 263–288. InTech, Rijeka (2012). Ch. 11

  40. Shklovskij, V.A., Dobrovolskiy, O.V.: Temp. Phys. 39(2), 120–124 (2013)

    Article  Google Scholar 

  41. Dobrovolskiy, O.V., Huth, M.: Assessment of periodic pinning insuperconductorsatmicrowaves. In: Abstract book of the Ninth International ConferenceonVortexMatterinNanostructured Superconductors, pp 12–17, Rhodes(Greece) (2015)

  42. Bartussek, R., Hänggi, P., Kissner, J.G.: Europhys. Lett. 28(7), 459 (1994)

    Article  ADS  Google Scholar 

  43. Hänggi, P., Bartussek, R.: Brownian rectifiers: How to convert brownian motion into directed transport. In: Parisi, J., Müller, S., Zimmermann, W. (eds.) Nonlinear Physics of Complex Systems, Vol. 476 of Lecture Notes in Physics, pp. 294–308. Springer, Berlin Heidelberg (1996)

  44. Mateos, J.L.: Phys. Rev. Lett. 84, 258–261 (2000)

    Article  ADS  Google Scholar 

  45. Popescu, M.N., Arizmendi, C.M., Salas-Brito, A.L., Family, F.: Phys. Rev. Lett. 85, 3321–3324 (2000)

    Article  ADS  Google Scholar 

  46. Zarlenga, D.G., Larrondo, H.A., Arizmendi, C.M., Family, F.: Phys. Rev. E 80, 011127 (2009)

    Article  ADS  Google Scholar 

  47. Arzola, A.V., Volke-Sepúlveda, K., Mateos, J.L.: Phys. Rev. Lett. 106, 168104 (2011)

    Article  ADS  Google Scholar 

  48. Vanneste, C., Chi, C.C., Brown, K.H., Callegari, A.C., Chen, M.M., Greiner, J.H., Jones, H.C., Kim, K.K., Kleinsasser, A.W., Notarys, H.A., Proto, G., Wang, R.H., Yogi, T.: Phys. Rev. B 31, 4230–4233 (1985)

    Article  ADS  Google Scholar 

  49. Aliev, F.G., Levanyuk, A.P., Villar, R., Sierra, J.F., Pryadun, V.V., Awad, A., Moshchalkov, V.V.: New J. Phys. 11(6), 063033 (2009)

    Article  ADS  Google Scholar 

  50. Knufinke, M., Ilin, K., Siegel, M., Koelle, D., Kleiner, R., Goldobin, E.: Phys. Rev. E 85, 011122–1–9 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the German Research Foundation (DFG) through grant DO 1511 and conducted within the framework of the NanoSC-COST Action MP1201 of the European Cooperation in Science and Technology. This research has received funding from the European Unions Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant Agreement No. 644348 (MagIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dobrovolskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrovolskiy, O.V., Sosedkin, V.V., Sachser, R. et al. Zero-Bias Shapiro Steps in Asymmetric Pinning Nanolandscapes. J Supercond Nov Magn 30, 735–741 (2017). https://doi.org/10.1007/s10948-016-3642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3642-8

Keywords

Navigation