Skip to main content
Log in

Lattice Energy Determination for Polycrystalline Oxide Ceramics and Single-Crystalline Counterparts

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The compositional dependence of lattice energies for polycrystalline specimens of spinel ferrite systems, Zn x Co1−x Fe2 O 4 (x = 0.0–0.6); slowly cooled and quenched systems of CuAl x Fe2−x O 4 (x = 0.0–0.6); high-energy ball milled mixed ferrite composition, Ni0.5Zn0.5Fe2 O 4 (0–9 h); garnet system, Y3−x Fe5 + x O 12 (x = 0.0–0.5); manganite perovskite system, La1−x Ca x MnO3 (x = 0.0–1.0); and superconducting systems, Bi1.7−x Pb0.3Al x Sr2Ca2Cu3 O 10 (x = 0.0–0.3), Bi1.7−x Pb0.3Ga x Sr2CaCu2 O 8 (x = 0.0–0.3), and Bi2Sr2CaCu2 O 8+0−−5 % Ag + addition has been evaluated, making use of mean sound velocity data and employing Kudriavtsev’s approach. It is found that for all the systems, lattice energy decreases, and it is explained based on the change in structural and microstructural parameters as a function of substitution. The lattice energies for single-crystalline counterparts have been computed using four different estimation models based on Kapustinskii method, molecular volume and X-ray density, connectivity indices, and chemical hardness. The observed difference between the two has been discussed in the light of grain and grain boundary contributions and presence of pores and microcracks in polycrystalline materials. A simple model suggested for lattice energy determination for complex oxide compositions based on the oxide additivity rule was found to be quite satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waddington, T.C.: Advances in Inorganic Chemistry and Radiochemistry. Academic, London (1959)

    Google Scholar 

  2. Kapustinskii, A.F.: Quart. Rev. Chem. Soc. 10, 283–294 (1956)

    Article  Google Scholar 

  3. Jenkins, H.D.B., Tudela, D., Glasser, L.: Inorg. Chem. 41, 2364–2367 (2002)

    Article  Google Scholar 

  4. Mu, L., Feng, C., He, H.: MATCH Commun. Math. Comput. Chem. 56, 97–111 (2006)

    MathSciNet  Google Scholar 

  5. Glasser, L., Jenkins, H. D. B.: J. Am. Chem. Soc. 122, 632–638 (2000)

    Article  Google Scholar 

  6. Liu, D., Zhang, S., Wu, Z.: Inorg. Chem. 42, 2465–2469 (2000)

    Article  Google Scholar 

  7. Range, S., Bernardes, C.E.S., Simoes, R.G., Epple, M., Minas de Piedade, M.E.: J. Phys. Chem. C 119, 4387–4396 (2015)

    Article  Google Scholar 

  8. Subrahmanyam, M., Rajagopal, E., Murthy, N.M.: Ind. J. Pure Appl. Phys. 43, 660–663 (2005)

    Google Scholar 

  9. Zhang, P., Zhao, Y., Haito, W.: Dalton Trans. 44, 16684–16693 (2015)

    Article  Google Scholar 

  10. Zhang, P., Zhao, Y., Wang, X.: Dalton Trans. 44, 10932–10938 (2015)

    Article  MathSciNet  Google Scholar 

  11. Lakhani, V.K., Pathak, T.K., Vasoya, N.H., Modi, K.B.: Solid State Sci. 13, 539–547 (2011)

    Article  ADS  Google Scholar 

  12. Modi, K.B., Shah, S.J., Pathak, T.K., Vasoya, N.H., Lakhani, V.K., Yahya, A.K.: AIP Conf. Proc. 1591, 1115 (2014)

    Article  ADS  Google Scholar 

  13. Modi, K.B., Shah, S.J., Pujara, N.B., Pathak, T.K., Vasoya, N.H., Jhala, I.G.: J. Mol. Struc. 1049, 250–262 (2013)

    Article  ADS  Google Scholar 

  14. Sharma, P.U., Modi, K.B.: Phys. Scr. 81(9), 015601 (2010)

    Article  ADS  Google Scholar 

  15. Kudriastev, B.B.: Sov. Phys. Acoust. 2, 36–45 (1956)

    Google Scholar 

  16. Modi, K.B., Raval, P.Y., Shah, S.J., Kathad, C.R., Dulera, S.V., Popat, M.V., Zankat, K.B., Saija, K.G., Pathak, T.K., Vasoya, N.H., Lakhani, V.K., Chandra, U., Jha, P.K.: Inorg. Chem. 54, 1543–1555 (2015)

    Article  Google Scholar 

  17. Patil, V.G., Shersath, S.E., More, S.D., Shukla, S.J., Jadhav, K.M.J.: Alloys. Compd. 488, 199–203 (2009)

    Article  Google Scholar 

  18. Buch, J.J.U., Lalitha, G., Pathak, T.K., Vasoya, N.H., Lakhani, V.K., Reddy, P.V., Kumar, R., Modi, K.B.: J. Phys. D: Appl. Phys. 41(10), 025406 (2008)

    Article  Google Scholar 

  19. Solunke, M.B., Sharma, P.U., Pandya, M.P., Lakhani, V.K., Modi, K.B., Reddy, P.V., Shah, S.S.: Pramana J. Phys. 65, 481–490 (2005)

    Article  ADS  Google Scholar 

  20. Solunke, M.B., Sharma, P.U., Lakhani, V.K., Pandya, M.P., Modi, K.B., Reddy, P.V., Shah, S.S.: Ceram. Inter. 33, 21–26 (2007)

    Article  Google Scholar 

  21. Solunke, M.B., Modi, K.B., Lakhani, V.K., Zankat, K.B., Sharma, P.U., Reddy, P.V., Shah, S.S.: Ind. J. Pure Appl. Phys. 45, 764–766 (2007)

    Google Scholar 

  22. Subrahmanyam, M., Rajagopal, E., Murthy, N.M.: Ind. J. Pure Appl. Phys. 38, 495–498 (2000)

    Google Scholar 

  23. de Boer, F., van Santen J.H., Verway, E.J.W.: J. Chem. Phys. 18, 1032–1034 (1950)

    Article  ADS  Google Scholar 

  24. Goldman, A.: Modern Ferrite Technology, 2nd edn, pp 58–59. Springer, New York

  25. Kaya, S., Kaya, C.: Inorg. Chem. 54, 8207–8213 (2015)

    Article  Google Scholar 

  26. Dreizler, R.M., Gross, E.K.U.: Density Function Theory. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  27. Chattaraj, P.K., Giri, S., Duley, S.J.: Phys. Chem. Lett. 1, 1064–1067 (2010)

    Article  Google Scholar 

  28. Shanon, R.D., Rossman, G.R.: Am. Min. 77, 94–100 (1992)

    Google Scholar 

  29. Callister, W.D.: Materials Science and Engineering: an Introduction, 80 (2000)

  30. Roberts, A.P., Garbcozi, E.J.J.: Am. Ceram. Soc. 83(12), 3041–3048 (2000)

    Article  Google Scholar 

  31. Li, H., Oppenheimer, S.M., Stupp, S.I., Dunand, D.C., Brinson, L.C.: Mater. Tran. 45(4), 124–1131 (2004)

    Google Scholar 

  32. Wang, Q., Saunders, G.A., Almond, D.P., Cankurtaran, M., Goretta, K.C.: Phys. Rev. B 52, 3711–3726 (1995)

    Article  ADS  Google Scholar 

  33. Buch, J.J.U., Pathak, T.K., Lakhani, V.K., Vasoya, N.H., Modi, K.B.: J. Phys. D: Appl. Phys. 40, 5306–5312 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

KBM is thankful to Professor P.L. Chauhan, Honorable Vice Chancellor of Saurashtra University, for his constant encouragement to carryout research activities; to UGC, New Delhi, for providing the financial assistance in the form of Major Research Project scheme, and to Ms. Pooja Y. Raval for her help in the computational work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal B. Modi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, K.B. Lattice Energy Determination for Polycrystalline Oxide Ceramics and Single-Crystalline Counterparts. J Supercond Nov Magn 29, 2287–2297 (2016). https://doi.org/10.1007/s10948-016-3591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3591-2

Keywords

Navigation