Skip to main content
Log in

Numerical Simulation of AC Loss in 2G High-Temperature Superconducting Coils with 2D-Axisymmetric Finite Element Model by Magnetic Field Formulation Module

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, numerical simulation of the second generation (2G) high-temperature superconducting coils has been developed in the module of magnetic field formulation with 2D-axisymmetric model. The brevity of expressions and the consistency between the 2D model and 2D-axisymmetric model of this approach make it easier than the method of partial differential equations (PDEs) and magnetic fields module to simulate the high-temperature superconductors. The accuracy of this technique was certified through the comparison with the results of infinite long tape solved by the analytical equation and PDE method. Then, the simulation about a high-temperature superconducting coil with 40 turns was conducted, in which the anisotropic characteristics of 2G tapes expressed with the fitting formulation of J(B, 𝜃) was considered. The distribution of current density and magnetic field at different time steps, and the voltage variation for each turn in the coil were studied. It could be seen that the electromagnetic quantities at the inner turns of a coil must be especially noticed. And finally, the AC loss of our model was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, M., Kvitkovic, J., Kim, C., Pamidi, S., Combs, T.: J. Appl. Phys. 114(4), 043901 (2013)

    Article  ADS  Google Scholar 

  2. Terzieva, S., Vojenčiak, M., Pardo, E., Grilli, F., Drechsler, A., Kling, A., Kudymow, A., Gömöry, F., Goldacker, W.: Supercond. Sci. Technol. 23(1), 014023 (2009)

    Article  ADS  Google Scholar 

  3. Jiang, Z., Long, N.J., Badcock, R., Staines, M., Slade, R., Caplin, A., Amemiya, N.: Supercond. Sci. Technol. 25(3), 035002 (2012)

    Article  ADS  Google Scholar 

  4. Zermeno, V.M., Abrahamsen, A.B., Mijatovic, N., Jensen, B.B., Sørensen, M.P.: J. Appl. Phys. 114(17), 173901 (2013)

    Article  ADS  Google Scholar 

  5. Barnes, G., McCulloch, M., Dew-Hughes, D.: Supercond. Sci. Technol. 12(8), 518 (1999)

    Article  ADS  Google Scholar 

  6. Coombs, T., Campbell, A., Murphy, A., Emmens, M.: COMPEL-The Int. J. Comput. Math. Electr. Electron. Eng. 20(1), 240 (2001)

    Article  Google Scholar 

  7. Prigozhin, L.: IEEE Trans. Appl. Supercond. 7(4), 3866 (1997)

    Article  Google Scholar 

  8. Amemiya, N., Murasawa, S.I., Banno, N., Miyamoto, K.: Phys. C Supercond. 310(1), 16 (1998)

    Article  ADS  Google Scholar 

  9. Amemiya, N., Miyamoto, K., Murasawa, S.I., Mukai, H., Ohmatsu, K.: Phys. C Supercond. 310 (1), 30 (1998)

    Article  ADS  Google Scholar 

  10. Hong, Z., Campbell, A., Coombs, T.: Supercond. Sci. Technol. 19(12), 1246 (2006)

    Article  ADS  Google Scholar 

  11. Hong, Z., Yuan, W., Ainslie, M., Yan, Y., Pei, R., Coombs, T.: IEEE Trans. Appl. Supercond. 21(3), 2466 (2011)

    Article  ADS  Google Scholar 

  12. Zhang, M., Kvitkovic, J., Kim, J.H., Kim, C., Pamidi, S., Coombs, T.: Appl. Phys. Lett. 101 (10), 102602 (2012)

    Article  ADS  Google Scholar 

  13. Zhang, M., Coombs, T.: Supercond. Sci. Technol. 25(1), 015009 (2011)

    Article  ADS  Google Scholar 

  14. Grilli, F., Stavrev, S., Le Floch, Y., Costa-Bouzo, M., Vinot, E., Klutsch, I., Meunier, G., Tixador, P., Dutoit, B.: IEEE Trans. Appl. Supercond. 15(1), 17 (2005)

    Article  Google Scholar 

  15. Chen, Y., Zhang, M., Chudy, M., Matsuda, K., Coombs, T., Physica, C: Superconductivity 487, 31 (2013)

    Article  Google Scholar 

  16. Hong, Z., Jiang, Q., Pei, R., Campbell, A., Coombs, T.: Supercond. Sci. Technol. 20(4), 331 (2007)

    Article  ADS  Google Scholar 

  17. Zhang, M., Kim, J.H., Pamidi, S., Chudy, M., Yuan, W., Coombs, T. J. Appl. Phys. 111(8), 083902 (2012)

    Article  ADS  Google Scholar 

  18. Grilli, F., Zermeno, V., Vojenciak, M., Pardo, E., Kario, A., Goldacker, W.: IEEE Trans. Appl. Supercond. 23(3), 5900205 (2013)

    Article  Google Scholar 

  19. Norris, W.: J. Phys. D Appl. Phys. 3(4), 489 (1970)

    Article  ADS  Google Scholar 

  20. Ainslie, M.D., Flack, T.J., Hong, Z., Coombs, T.A.: COMPEL-The Int. J. Comput. Math. Electr. Electron. Eng. 30(2), 762 (2011)

    Article  Google Scholar 

  21. Pardo, E., Vojenčiak, M., Gömöry, F., Šouc, J.: Supercond. Sci. Technol. 24(6), 065007 (2011)

    Article  ADS  Google Scholar 

  22. Ainslie, M.D., Hu, D., Zou, J., Cardwell, D.A.: IEEE Trans. Appl. Supercond. 25(3), 1 (2015)

    Article  Google Scholar 

  23. Grilli, F., Zermeno, V.M., Pardo, E., Vojenciak, M., Brand, J., Kario, A., Goldacker, W.: IEEE Trans. Appl. Supercond. 24(3), 1 (2014)

    Article  Google Scholar 

  24. Krueger, P.: Optimisation of hysteretic losses in high- temperature superconducting wires, vol. 15. KIT Scientific Publishing (2014)

Download references

Acknowledgments

Lei Wang wants to thank Dr. F. Grilli (the Institute for Technical Physics, Karsruhe Institute of Technology, Germany), Dr. M. Zhang (Department of Electronic and Electrical Engineering, University of Bath, UK), and Dr. Z. Hong (School of Electronic, Information and Electrical Engineering, Shanghai Jiaotong University, China), for the discussions over the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxing Zheng.

Additional information

This work was supported in part by the National Natural Science Foundation of China under Grant No. 51507173 and Anhui Province Natural Science Foundation of China under Grant No. 1608085QE93.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zheng, J., Jiang, F. et al. Numerical Simulation of AC Loss in 2G High-Temperature Superconducting Coils with 2D-Axisymmetric Finite Element Model by Magnetic Field Formulation Module. J Supercond Nov Magn 29, 2011–2018 (2016). https://doi.org/10.1007/s10948-016-3523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3523-1

Keywords

Navigation