Skip to main content
Log in

Theoretical Investigation of Magnetocaloric Effect in La0.6Ca0.2Ba\(_{0.15}\square _{0.05}\)MnO3 Manganite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, the prediction of the magnetocaloric properties has been investigated in the La0.6Ca0.2Ba\(_{\mathrm {0.15}}\square _{\mathrm {0.05}}\)MnO3 system near the ferromagnetic-paramagnetic phase transition as a function of temperature. The data indicate that the La0.6Ca0.2Ba\(_{\mathrm {0.15}}\square _{\mathrm {0.05}}\)MnO3 system has potential application for magnetic refrigerants in an extended high-temperature range. In addition, the magnetic entropy change distribution is quite uniform, which is desirable for an Ericsson cycle magnetic refrigerator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Megaw, H.D.: Crystal Structures: A Working Approach. W. B. Saunders Company, Philadelphia (1973)

    Google Scholar 

  2. Lytle, F.W.: X-ray diffractometry of low-temperature phase transformations in strontium titanate. J. Appl. Phys. 35, 2212 (1964)

    Article  ADS  Google Scholar 

  3. Kay, H.F., Bailey, P.C.: Structure and properties of CaTiO3. Acta. Cryst. 10, 219 (1957)

    Article  Google Scholar 

  4. Gschneidner, K.A. Jr., Pecharsky, V.K., Tsoko, A.O.: Recent developments in magneto-caloric materials. Rep. Prog. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  5. Hamad, M.A.: Theoretical work on magneto-caloric effect in La0.75Ca0.25MnO3. J. Adv. Ceram. 1, 290 (2012)

    Article  Google Scholar 

  6. Hamad, M.A.: Room temperature giant electro-caloric properties of relaxor ferroelectric 0.93PMN-0.07PT thin film. AIP Adv. 3, 032115 (2013)

    Article  ADS  Google Scholar 

  7. Hamad, M.A.: Magneto-caloric effect in polycrystalline Gd1−xCaxBaCo2O5.5. Mater. Lett. 82, 181 (2012)

    Article  Google Scholar 

  8. Hamad, M.A.: Investigations on electro-caloric properties of [111]-oriented 0.955PbZn1/3Nb2/3O3-0.045PbTiO3 single crystals. Phase Transit. 86, 307 (2013)

    Article  Google Scholar 

  9. Hamad, M.A.: Magneto-caloric effect in Ge0.95Mn0.05 films. J. Supercond. Nov. Magn. 26, 449 (2013)

    Article  Google Scholar 

  10. Hamad, M.A.: Calculation of electro-caloric properties of ferroelectric SrBi2Ta2O9. Phase Transit. 85, 159 (2012)

    Article  Google Scholar 

  11. Hamad, M.A.: Theoretical investigations on electro-caloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 thin film. J. Comput. Electron. 11, 344 (2012)

    Article  Google Scholar 

  12. Hamad, M.A.: Theoretical work on magneto-caloric effect in ceramic and sol-gel La0.67Ca0.33MnO3. J. Therm. Anal. Calorim. 111, 1251 (2013)

    Article  Google Scholar 

  13. Hamad, M.A.: Detecting giant electro-caloric effect in SrxBa1−xNb2O6 single crystals. Appl. Phys. Lett. 100, 192908 (2012)

    Article  ADS  Google Scholar 

  14. Hamad, M.A.: Investigations on electro-caloric properties of ferroelectric Pb(Mg0.067Nb0.133Zr0.8)O 3. Appl. Phys. Lett. 102, 142908 (2013)

    Article  ADS  Google Scholar 

  15. Hamad, M.A.: Calculations on nano crystalline CoFe2O4 prepared by polymeric precursor method. J. Supercond. Nov. Magn. 26, 669 (2013)

    Article  Google Scholar 

  16. Hamad, M.A.: Prediction of thermo-magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Transit. 85, 106 (2012)

    Article  Google Scholar 

  17. M’nassri, R., Cheikhrouhou, A.: Magneto-caloric effect in LaFe10.7Co0.8Si1.5 compound near room temperature. J. Supercond. Nov. Magn. 27, 1059 (2014)

    Article  Google Scholar 

  18. Szymczak, R., Czepelak, M., Kolano, R., Kolano-Burian, A., Krzymanska, B., Szymczak, H.: Magneto-caloric effect in La1−xCaxMnO3 for x = 0.3, 0.35, and 0.4. J. Mater. Sci. 43, 1734 (2008)

    Article  ADS  Google Scholar 

  19. Bohigas, X., Tejada, J., del Barco, E., Zhang, X.X., Sales, M.: Tunable magneto-caloric effect in ceramic perovskites. Appl. Phys. Lett. 73, 390 (1998)

    Article  ADS  Google Scholar 

  20. Guo, Z.B., Du, Y.W., Zhu, J.S., Huang, H., Ding, W.P., Feng, D.: Large magnetic entropy change in perovskite-type manganese oxides. Appl. Phys. Lett. 78, 1142 (1997)

    Article  Google Scholar 

  21. Radaelli, P.G., Cox, D.E., Marezio, M., Cheong, S.W., Schiffer, P.E., Ramirez, A.P.: Simultaneous structural, magnetic, and electronic transitions in La1−xCaxMnO3 with x = 0.25 and 0.50. Phys. Rev. Lett. 75, 4488 (1995)

    Article  ADS  Google Scholar 

  22. Kim, K.H., Gu, J.Y., Choi, H.S., Park, G.W., Noh, T.W.: Frequency shifts of the internal phonon modes in La0.7Ca0.3MnO3. Phys. Rev. Lett. 77, 1877 (1996)

    Article  ADS  Google Scholar 

  23. Tang, T., Gu, K.M., Cao, Q.Q., Wang, D.H., Zhang, S.Y., Du, Y.W.: Magneto-caloric properties of Ag-substituted perovskite-type manganites. J. Magn. Magn. Mater. 222, 110 (2000)

    Article  ADS  Google Scholar 

  24. Phan, M.H., Tian, S.B., Yu, S.C., Ulyanov, A.N.: Magnetic and magneto-caloric properties of La0.7Ca0.3−xBaxMnO3 compounds. J. Magn. Magn. Mater. 256, 306 (2003)

    Article  ADS  Google Scholar 

  25. Sun, Y., Tong, W., Zhang, Y.H.: Large magnetic entropy change above 300K in La0.67Sr0.33Mn0.9Cr0.1O3. J. Magn. Magn. Mater. 232, 205 (2001)

    Article  ADS  Google Scholar 

  26. Yang, H., Zhu, Y.H., Xian, T., Jiang, J.L.: Synthesis and magneto-caloric properties of La0.7Ca0.3MnO3 nano-particles with different sizes. J. Alloys Compd. 555, 150 (2013)

    Article  Google Scholar 

  27. Zhang, X.X., Wen, G.H., Wang, F.W., Wang, W.H., Yu, C.H.: Magnetic entropy change in Fe-based compound LaFe10.6Si2.4. Appl. Phys. Lett. 77, 3072 (2000)

    Article  ADS  Google Scholar 

  28. Franco, V., Blazquez, J.S., Conde, A.: Field dependence of the magneto-caloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512 (2006)

    Article  ADS  Google Scholar 

  29. M’nassri, R., Cheikhrouhou-Koubaa, W., Chniba Boudjada, N., Cheikhrouhou, A.: Effect of barium-deficiency on the structural, magnetic and magneto-caloric properties of La0.6Sr0.2Ba\(_{\mathrm {0.2-x}}\square _{\mathrm {x}}\)MnO3 (0 ≤ x ≤ 0.15). J. Appl. Phys. 113, 073905–1 (2013)

    Article  ADS  Google Scholar 

  30. Phan, M.H., Yu, S.C.: Review of the magneto-caloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)

    Article  ADS  Google Scholar 

  31. Franco, V., Conde, A., Provenzano, V., Shull, R.D.: Scaling analysis of the magneto-caloric effect in Gd5Si2Ge1.9X0.1(X = Al, Cu, Ga, Mn, Fe, Co). J. Magn. Magn. Mater. 322, 218 (2010)

    Article  ADS  Google Scholar 

  32. Zhang, X.X., Tejada, J., Xin, Y., Sun, G.F., Wong, K.W., Bohigas, X.: Magneto-caloric effect in La0.67Ca0.33MnO δ and La0.60Y0.07Ca0.33MnO δ bulk materials. Appl. Phys. Lett. 69, 3596 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Cheikhrouhou-Koubaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sfifir, I., Cheikhrouhou-Koubaa, W., Koubaa, M. et al. Theoretical Investigation of Magnetocaloric Effect in La0.6Ca0.2Ba\(_{0.15}\square _{0.05}\)MnO3 Manganite. J Supercond Nov Magn 29, 2065–2069 (2016). https://doi.org/10.1007/s10948-016-3512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3512-4

Keywords

Navigation