Skip to main content
Log in

Novel Synthesis and Nanostructure Controlled Magnetic Characteristics of ε-Fe3N and γ′-Ni x Fe4−x N (0.2 ≤ x ≤ 0.8) Nitrides

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nanocrystalline ε-Fe3N and γ′-Ni x Fe4−xN (0.2 ≤ x ≤ 0.8) nitride materials are synthesized in pure phase via sol-gel-mediated oxide precursors. The materials are characterized using XRD, SEM (EDX), and magnetic measurements. ε-Fe3N and γ′-Ni x Fe4−x N (0.2 ≤ x ≤ 0.8) materials crystallize in hexagonal and cubic structures, respectively. The lattice parameters are estimated to be a = 4.7812(36) Å and c = 4.4232(31) Å for ε-Fe3N and in the range of 3.7922(10)–3.7957(3) Å for various γ′-Ni x Fe4 −xN (0.2 ≤ x ≤ 0.8) materials. The values of the lattice parameters show increasing trend up to x = 0.6, showing a peak, and thereafter decreases with the increase in Ni weight percent in γ′-Ni x Fe4−xN (0.2 ≤ x ≤ 0.8) materials. The average crystallite sizes are in the range of 31–54 nm and confirm the nanocrystalline nature of the materials. The SEM particle sizes are in the range of 153(7)–250(14) nm. For pure ε-Fe3N, the values of saturation magnetization (M s) and coercivity (H c) are 12 emu/g and 225 Oe, respectively. With the progressive substitution of Ni atoms, hexagonal (ε-phase) changes to cubic (γ′-phase) at the same reaction temperature, which is evident from the increase in M s and H c values, i.e., in the range of 144–181 emu/g and 76–109 Oe, respectively, for γ′-Ni x Fe4 −xN (0.2 ≤ x ≤ 0.8) compounds. The values of the saturation magnetization for γ′-Ni x Fe4 −xN (0.2 ≤ x ≤ 0.8) are found to increase with the increase in Ni content in the materials up to the value of x = 0.6 and decrease thereafter. These results have been interpreted in terms of size and shape effects in nanomaterials including lattice strain and surface effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Theerthagiri, J., Dalavi, S. B., Manivel Raja, M., Panda, R. N.: Magnetic properties of nanocrystalline ε-Fe3N and Co 4N phases synthesized by newer precursor route. Mater. Res. Bull. 48, 4444–4448 (2013)

    Article  Google Scholar 

  2. Panda, R.N., Gajbhiye, N. S.: Mossbauer and magnetic studies of nanocrystalline γ′-Fe4−xNi x N (0.2 ≤ x ≤0.8) compounds. J. Magn. Magn. Mater. 195, 396–495 (1999)

    Article  ADS  Google Scholar 

  3. Tasaki, A., Tagawa, K., Kita, E., Harada, S., Kusunose, T.: Recording tapes using iron nitride fine powder. IEEE Trans. Magn. 17, 3026–3028 (1981)

    Article  ADS  Google Scholar 

  4. Andrimandroso, D., Fefilatiev, L., Demazeau, G., Fournes, L., Pouchard, M.: Mössbauer resonance studies on Sn substituted Fe4N. Mater. Res. Bull. 19, 1187–1194 (1984)

    Article  Google Scholar 

  5. Loloee, R.: Epitaxial Ni3FeN thin films: a candidate for spintronic devices and magnetic sensors. J. appl. Phys. 112, 023902(1–6) (2012)

  6. Zhang, P., Wang, X., Wang, W., Lei, X., Yin, W., Yang, H.: The structure and magnetic properties of Fe3N as photo-catalyst applied in hydrogen generation induced by visible light. RSC Adv. (2015). doi:. to be published

    Google Scholar 

  7. Shoji, H., Nashi, H., Eguchi, K., Takahashi, M.: An experimental trial for the synthesis of α -(Fe100−x Co x) 16 N 2(x =0-30) martensite films by reactive sputtering. J. Magn. Magn. Mater. 162, 202–210 (1996)

    Article  ADS  Google Scholar 

  8. Panda, R.N., Gajbhiye, N. S.: Magnetic properties of nanocrystalline γ′–Fe4 N and ε–Fe3N synthesized by citrate route. IEEE Trans. Magn. 30, 542–548 (1998)

    Article  ADS  Google Scholar 

  9. Suzuki, K., Morita, H., Kaneko, T., Yoshida, H., Fujimori, H.: Crystal structure and magnetic properties of the compound FeN. J. Alloys Compd. 201, 11–16 (1993)

    Article  Google Scholar 

  10. Panda, R.N., Gajbhiye, N. S.: Magnetic properties of nanocrystalline γ-Fe-Ni-N nitride systems. J. appl. Phys. 86, 3295–3302 (1999)

    Article  ADS  Google Scholar 

  11. Xue, D., Li, F., Yang, J., Kong, Y., Gao, M.: Effects of substitutional atoms on the properties of γ′-(Fe1−x-TM x)4N (TM = Co, Ni) compounds. J. Magn. Magn. Mater. 172, 165–172 (1997)

    Article  ADS  Google Scholar 

  12. Siberchicot, B., Matar, S.F., Fournes, L., Demazeau, G., Hagenmuller, P.: Influence of the substitution of manganese for iron in the Fe4N lattice on particle formation and magnetic properties. J. Solid State Chem. 84, 10–15 (1990)

    Article  ADS  Google Scholar 

  13. Diao, X.G., Scorzelli, R. B., Rechenberg, H.: R.: 57Fe Mossbauer study of perovskite-type Fe-Ni nitrides γ′-(Fe1−xNi x )4N (0 ≤x≤ 0.8). J. Magn. Magn. Mater. 218, 81–90 (2000)

    Article  ADS  Google Scholar 

  14. Mi, W.B., Guo, Z.B., Feng, X.P., Bai, H.L.: Reactively sputtered epitaxial γ′-Fe4N films: surface morphology, microstructure, magnetic and electrical transport properties. Acta Mater. 61, 6387–6395 (2013)

    Article  Google Scholar 

  15. Kurian, S., Bhattacharya, S., Desimoni, J., Peltzer, E.L., Blanca, Y., Rebaza, A. V. G, Gajbhiye, N.S.: Investigation of γ′-Fe4N-GaN nanocomposites: structural and magnetic characterization, Mossbauer spectroscopy and ab initio calculations. J. Phys. Chem. C. 114, 17542–17549 (2010)

    Article  Google Scholar 

  16. Wang, L.L., Zheng, W.T., Ana, T., Mab, N., Gong, J.: Effect of Ni concentration on the structure and magnetic properties for nanocrystalline Fe–Ni–N thin films. J. Alloys Compd. 495, 265–267 (2010)

    Article  Google Scholar 

  17. Panda, R. N., Kaskel, S.: Synthesis and characterization of high surface area molybdenum nitride. J. mater. Sci. 41, 2465–2470 (2006)

    Article  ADS  Google Scholar 

  18. Bem, D.S., Zur Loye, H.-C.: Synthesis of the new ternary transition metal nitride FeWN 2 via ammonolysis of a solid state oxide precursor. J. Solid State Chem. 104, 467–469 (1993)

    Article  ADS  Google Scholar 

  19. Feng, Y.B.: Magnetic properties of nanometer-sized Fe4N compound. J. appl. Phys. 76, 6594 (1994)

    Article  ADS  Google Scholar 

  20. Jack, K.H.: The occurrence and the crystal structure of α – iron nitride, a new type of interstitial alloy formed during the tempering of nitrogen-martensite. Proc. Roy. Soc. (London) A. 208, 216–224 (1951)

    Article  ADS  Google Scholar 

  21. Culity, B. D.: Elements of X-ray diffraction. Reading, MA: Addison-Wesley (1956)

  22. Gajbhiye, N. S., Bhattacharya, S.: Mossbauer and magnetic studies for the coexistence of ε–Fe3−xNixN and γ′-Fe4−yNiyN phases in Fe-Ni-N nano particles. Indian. J. Pure Appl. Phys. 45, 834–838 (2007)

    Google Scholar 

  23. Gajbhiye, N.S., Panda, R. N., Ningthoujam, R. S., Bhattacharya, S.: Magnetism of nanostructured iron nitride (Fe–N) systems. Phys.stat.sol.(c). 12, 3252–3259 (2004)

    Article  Google Scholar 

  24. Wei, Z., Xia, T., Ma, J., Feng, W., Dai, J., Wang, Q., Yan, P.: Investigation of the lattice expansion for Ni nanoparticles. Mater. Charact. 58, 1019–1024 (2007)

    Article  Google Scholar 

  25. Diehm, P. M., Agoston, P., Albe, K.: Size-dependent lattice expansion in nanoparticles: reality or anomaly? ChemPhysChem 13, 2443–2454 (2012)

    Article  Google Scholar 

  26. Pak, J., Lin, W., Wang, K., Chinchore, A., Shi, M., Ingram, D.C., Smith, A. R.: Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride. J. Vac. Sci. Technol. A 28, 536–540 (2010)

    Article  Google Scholar 

  27. Mammeri, F.Z., Chekour, L., Rouag, N.: Characterization of nitride thin films using SEM and EDX. Acta. Phys. Pol. A 123, 294–295 (2013)

    Article  Google Scholar 

  28. Liu, J., Meng, X.M., Jiang, Y., Lee, C.S., Bello, I., Lee, S.T.: Gallium nitride nanowires doped with silicon. Appl. Phys. Lett. 83, 4241–4243 (2003)

    Article  ADS  Google Scholar 

  29. Bean, C. P., Jacobs, I. S.: Magnetization of a dilute suspension of a multidomain ferromagnetic. J. Appl. Phys. 31, 1228–1230 (1960)

    Article  ADS  Google Scholar 

  30. Morup, S., Brok, E., Frandsen, C.: Spin structures in magnetic nanoparticles. J Nanomaterials. 2013(2013)1–8, Article ID 720629

  31. Hwang, J.H., Dravid, V. P., Teng, M. H., Host, J. J., Elliott, B. R., Johnson, D. L., Mason, T. O.: Magnetic properties of graphitically encapsulated nickel nanocrystals. J. Mater. Res. 12, 1076–1082 (1997)

    Article  ADS  Google Scholar 

  32. Li, F., Yang, J., Xue, D., Zhou, R.: Mössbauer study of the (Fe1−xNi x )4N compounds (0 ≤ x ≤ 0.6). Appl. Phys. Lett. 66, 2343–2345 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Department of Science and Technology (DST), New Delhi, India. We also express our thanks to Mr. A. Raja, Karunya University, India, for SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabi N. Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P.P., Raja, M.M. & Panda, R.N. Novel Synthesis and Nanostructure Controlled Magnetic Characteristics of ε-Fe3N and γ′-Ni x Fe4−x N (0.2 ≤ x ≤ 0.8) Nitrides. J Supercond Nov Magn 29, 1347–1356 (2016). https://doi.org/10.1007/s10948-016-3406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3406-5

Keywords

Navigation