Skip to main content
Log in

Ferroelectric/Antiferroelectric BiFeO3/YMnO3 Bilayer: a Monte Carlo Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The most important properties of ferroelectric/antiferroelectric (BiFeO3/YMnO3) bilayer are studied by Monte Carlo simulations. The electric polarization and hysteresis cycle with the different exchange interactions, J FeFe, J FeMn, and J MnMn, are given. The ferroelectric Curie temperature of BiFeO3 and the Néel temperature for an antiferroelectric YMnO3 are obtained. The ratio of spin up and spin down of Mn(Fe) in each layer are estimated. The exchange interactions J FeFe, J FeMn, and J MnMn and temperature T/ J FeFe effect in the electric hysteresis cycle are established. The magnetic field effect on the Curie and Néel temperature is given. The size effect on the hysteresis cycle is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  ADS  Google Scholar 

  2. Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D 38, R123—R152 (2005)

    Article  Google Scholar 

  3. Bichurin, M.I., Petrov, V.M., Ryabkov, O.V., Averkin, S.V., Srinivasan, G.: Theory of magnetoelectric effects at magnetoacoustic resonance in single-crystal ferromagnetic-ferroelectric heterostructures. Phys. Rev. B 72, 060408 (2005)

    Article  ADS  Google Scholar 

  4. Hill, N.A.: Why are there so few magnetic ferroelectrics. J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  5. Duan, C.G., Jaswal, S.S., Tsymbal, E.Y.: Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006)

    Article  ADS  Google Scholar 

  6. Chang, K.S., Aronova, M.A., Lin, C.L., Murakami, M., Yu, M.H., Simpers, J.H., Famodu, O.O., Lee, S.Y., Ramesh, R., Wuttig, M., Takeuchi, I., Gao, C., Bendersky, L.A.: Exploration of artificial multiferroic thin-film heterostructures using composition spreads. Appl. Phys. Lett. 84, 3091 (2004)

    Article  ADS  Google Scholar 

  7. Zhang, J.X., Dai, J.Y., Chan, H.L.W.: Interfacial engineering and coupling of electric and magnetic properties in Pb(Zr0.53Ti0.47) O3/CoFe2O4 multiferroic epitaxial multilayers. J. Appl. Phys. 107, 104105 (2010)

    Article  ADS  Google Scholar 

  8. Ramesh, R., Nicola Spaldin, A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007)

    Article  ADS  Google Scholar 

  9. Zhu, J., Zhou, L.X., Huang, W., Li, Y.Q., Li, Y.R.: Study on the growth and interfacial strain of CoFe2O4/BaTiO3 bilayer films. J. Cryst. Growth 31, 3300 (2009)

    Article  ADS  Google Scholar 

  10. Eerenstein, W., Mathur, N.D., Scott, J.F.: Nature 442(17), 761 (2006)

    ADS  Google Scholar 

  11. Matthews, J.W.: Epitaxial Growth, p 382. Academic Press, New York (1975)

    Google Scholar 

  12. Fullerton, E.E., Jiang, J.S., Grimsditch, M., Sowers, C.H., Bader, S.D.: Exchange-spring behavior in epitaxial hard/soft magnetic bilayers. Phys. Rev. B 58, 12193 (1998)

    Article  ADS  Google Scholar 

  13. Skomski, R., Coey, J.M.D.: Giant energy product in nanostructured two-phase magnets. Phys. Rev. B 48, 15812 (1993)

    Article  ADS  Google Scholar 

  14. Suess, D., Schrefl, T., Fahler, S., Kirschner, M., Hrkac, G., Dorfbauer, F., Fidler, J.: Exchange spring media for perpendicular recording. Appl. Phys. Lett. B 87, 012504 (2005)

    Article  ADS  Google Scholar 

  15. Victora, R.H., Shen, X.: Composite media (dynamic tilted media) for magnetic recording. IEEE Trans. Mag. 41, 537 (2005)

    Article  ADS  Google Scholar 

  16. Bakrim, H., Bouslykhane, K., Hamedoun, M., Hourmatallah, A., Benzakour, N.: Couplings and interface effects in binary superlattices. Surf. Sci. 569, 219 (2004)

    Article  ADS  Google Scholar 

  17. Bakrim, H., Hamedoun, M., Hourmatallah, A.: Phase transition in Heisenberg magnetic film. Surf. Sci. 261, 415 (2003)

    Google Scholar 

  18. Razouk, A., Sahlaoui, M., Sajieddine, M.: Dependence of the magnetization on the interface morphology in ultra-thin magnetic/non-magnetic films: Monte Carlo approach. Appl. Surf. Sci. 255, 8695 (2009)

    Article  ADS  Google Scholar 

  19. Filho, C.J.C, Barberis, G.E.: A simple model for the magnetoelectric interaction in multiferroics. J. Phys. Conf. Ser. 273, 012134 (2011)

    Article  ADS  Google Scholar 

  20. Molina-Ruiz, M., Lopeandia, A.F., Pi, F., Givord, D., Bourgeois, O., Rodrıguez-Viejo, J.: Evidence of finite-size effect on the Néel temperature in ultrathin layers of CoO nanograins. Phys. Rev. B 83, 140407(R) (2011)

    Article  ADS  Google Scholar 

  21. Eerenstein, W., Morrison, F.D., Dho, J., Blamire, M.G., Scott, J.F., Mathur, N.D.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 307, 1203 (2005)

    Article  Google Scholar 

  22. Ainane, A., Essaoudi, I., Saber, M.: Ferroelectric/antiferroelectric bilayer superlattice described by a transverse spin-1/2 Ising model. J. Magn. Magn. Mater. 315, 132 (2007)

    Article  ADS  Google Scholar 

  23. Djedai, S., Talbot, E., Berche, P.E.: A Monte Carlo study of the magnetization reversal in DyFe2/YFe2 exchange-coupled superlattices. J. Magn. Magn. Mater. 368, 29 (2014)

    Article  ADS  Google Scholar 

  24. Lupu, N, Lostun, L, Chiriac, H: Surface magnetization processes in soft magnetic nanowires. J. Appl. Phys. 107, 09E315 (2010)

    Article  Google Scholar 

  25. Meyerhofer, D.: Transition to the ferroelectric state in barium titanate. Phys. Rev. 112, 413 (1958)

    Article  ADS  Google Scholar 

  26. Hoon, K.B., Young, O.S., Young, Y.H., Hong, W.G., Yun, Y.J., Kim, Y.Y., Kim, H.J.: Electrical quadruple hysteresis in Pd-doped vanadium pentoxide nanowires due to water adsorption. Sci. Technol. Adv. Mater. 11, 065003 (2010)

    Article  Google Scholar 

  27. Kocakaplan, Y., Kantar, E., Keskin, M.: Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique. Eur. Phys. J. B 86, 420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Jiang, W., Li, X.X., Liu, L.M., Chen, J.N., Zhang, F.: Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 353, 90 (2014)

    Article  ADS  Google Scholar 

  29. Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K.: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920–1923 (1996)

    Article  ADS  Google Scholar 

  30. Lee, H., Son, Y., Park, N., Han, S., Yu, J.: Magnetic ordering at the edges of graphitic fragments: magnetic tail interactions between the edge-localized states. Phys. Rev. B 72, 174431 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Masrour.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabar, A., Masrour, R., Benyoussef, A. et al. Ferroelectric/Antiferroelectric BiFeO3/YMnO3 Bilayer: a Monte Carlo Study. J Supercond Nov Magn 29, 733–739 (2016). https://doi.org/10.1007/s10948-015-3281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3281-5

Keywords

Navigation