Skip to main content
Log in

Electrical Properties of Cu Substituted Fe3O4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Diethylene glycol (DEG)-stabilized Cu-substituted Fe 3 O 4 nanoparticles (Cu x Fe 1−x Fe 2 O 4, 0.0≤x≤1.0) were prepared via polyol method. DEG was used as a stabilizer and dispersant. The X-ray powder diffraction analysis confirmed the formation of cubic spinel structure for all products. The scanning electron microscopy (SEM) micrographs confirmed that all products were roughly spherical in shape with a narrow size distribution and a homogenous shape. The dielectric properties of DEG-stabilized Cu x Fe 1−x Fe 2 O 4 nanoparticles were studied as a function of composition, frequency, and temperature. The dielectric constant (ε ), dielectric loss (ε ), and dielectric loss tangent (tanδ) indicate different trends with temperature as well as with the composition. The ac and dc conductivities are temperature and frequency dependent. The maximum dc conductivity was found to be about 1.85×10−7 S cm −1 for x=0.0 at 120 C. The conduction mechanism is due to electron hopping and temperature-assisted reorganization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang, J., Wu, Y.J., Zhu, Y.J.: Fabrication of complex of Fe 3 O 4 nanorods by magnetic-field-assisted solvothermal process. Mater. Chem. Phys. 106, 1–4 (2007)

    Article  Google Scholar 

  2. Zou, G.F., Xiong, K., Jiang, C.G., Li, H., Li, T.W., Du, J., Qian, Y.T.: Fe3O4 nanocrystals with novel fractal. J. Phys. Chem. B 109, 18356–18360 (2005)

    Article  Google Scholar 

  3. Hayakawa, H., Tanaka, H., Fujimoto, K.: Preparation of a new precipitated iron catalyst for Fischer–Tropsch synthesis. Catal. Commun. 8, 1820–1824 (2007)

    Article  Google Scholar 

  4. Durmus, Z., Kavas, H., Toprak, M.S., Baykal, A., Altıncekic, T.G., Aslan, A., Bozkurt, A., Cosgun, S.: L-lysine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J. Alloys Compd. 484, 371–376 (2009)

    Article  Google Scholar 

  5. Jiang, J., Gu, H., Shao, H., Devlin, E., Papaefthymiou, G.C., Ying, J.Y.: Bifunctional Fe 3 O 4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater. 20, 4403–4407 (2008)

    Article  Google Scholar 

  6. Lin, F.H., Chen, W., Liao, Y.H., Doong, R.A., Li, Y.D.: Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe 3 O 4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 4, 1223–1232 (2011)

    Article  Google Scholar 

  7. Schalowa, T., Brandta, B., Starra, D.E., Laurina, M., Schauermanna, S., Shaikhutdinova, S.K., Libuda, J., Freund, H.J.: Oxygen-induced restructuring of a Pd/Fe 3 O 4 model catalyst. Catal. Lett. 107, 189–195 (2006)

    Article  Google Scholar 

  8. Hsu, J.H., Chen, S.Y., Chang, W.M., Jian, T.S., Chang, C.R.: Magnetoresistance effect in AgFe 3 O 4 and Al-Fe 3 O 4 composite films. J. Appl. Phys. 93, 7702–7704 (2003)

    Article  ADS  Google Scholar 

  9. Yu, C.M., Guo, J.W., Gu, H.Y.: Surface of Au@Fe 3 O 4 magnetic nanoparticles. Microchim. Acta 166, 215–220 (2009)

    Article  Google Scholar 

  10. Li, Z.B., Deng, Y.D., Shen, B., Hu, W.B.: Preparation and microwave absorption properties of Ni– Fe3O4 hollow spheres. Mater. Sci. Eng. B 164, 112–115 (2009)

    Article  Google Scholar 

  11. Kittel, C.: Nuclear induction. Phys. Rev. 70, 965–970 (1946)

    Article  ADS  Google Scholar 

  12. Chundnovsky, E.M., Gunther, L.: Quantum Tunneling of magnetization in small ferromagnetic particles. Phys. Rev. Lett. 60, 661–667 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gunther, L.: Quantum tunneling of magnetization. Phys. World 3(12), 28 (1990)

    Article  Google Scholar 

  14. Ziolo, R.F.: US Patent 4, 474866 (1984)

    Google Scholar 

  15. Rosenweig, R.E.: Ferrohydrodynamics. MIT Press, Cambridge (1985)

    Google Scholar 

  16. Soibam, I., Phanjoubam, S., Sharma, H.B., Sharma, H.N.K., Laishram, R., Prakash, C.: Effects of cobalt substitution on the dielectric properties of Li–Zn ferrites. Solid State Commun. 148, 399–402 (2008)

    Article  ADS  Google Scholar 

  17. Mazen, S.A., Mansour, S.F., Dhahri, E., Zaki, H.M., Elmosalami, T.A.: The infrared absorption and dielectric properties of Li–Ga ferrite. J. Alloy Compd. 470, 294–300 (2009)

    Article  Google Scholar 

  18. Salah, L.M., Moustafa, A.M., Ahmed Farag, I.S.: Structural characteristics and electrical properties of copper doped manganese ferrite. Ceram. Intern. 38, 5605–5611 (2012)

    Article  Google Scholar 

  19. Kumar, S., Kumar, R., Thakur, P., Chae, K.H., Sharma, S.K., Alimuddin: Electronic structure studies of Mg0.95Mn0.05Fe2−2x Ti2x O4 (0≤x≤0.8). J. Magn. Magn. Mater. 320, e121–e124 (2008)

    Article  ADS  Google Scholar 

  20. Gautam, S., Muthurani, S., Balaji, M., Thakur, P., Padiyan, D., Pathinettam, K.H., Chae, S.S., Kim, S.S.A.: Asokan, Electronic structure studies of nanoferrite Cu xCo 1−xFe 2 O 4 by X-ray absorption spectroscopy. J. Nanotechnol. 11, 386–390 (2011)

    Google Scholar 

  21. Shin, H.C., Choi, S.C., Jung, K.D., Han, S.H.: Mechanism of M ferrites (M = Cu and Ni) in the CO 2 decomposition reaction. Chem. Mater. 13, 1238–1242 (2001)

    Article  Google Scholar 

  22. Amir, Md., Sertkol, M., Baykal, A., Sözeri, H.: Magnetic and catalytic properties of Cu xFe 1−xFe 2 O 4 nanoparticles. J. Supercond. Nov. Magn. (2015)

  23. Ahmeda, M.A., Okasha, N., Mansour, S.F., El-dek, S.I.: Bi-modal improvement of the physico-chemical characteristics of PEG and MFe 2 O 4 subnanoferrite. J. Alloy. Compd. 496, 345–350 (2010)

    Article  Google Scholar 

  24. Raman, M.S., Kesavan, M., Senthilkumar, K., Ponnuswamy, V.: Ultrasonic, DFT and FT-IR studies on hydrogen bonding interactions in aqueous solutions of diethylene glycol. J. Mol. Liqd. 202, 115–124 (2015)

    Article  Google Scholar 

  25. Sozeri, H., Durmus, Z., Baykal, A.: Structural and magnetic properties of triethylene glycol stabilized ZnxCo 1−x Fe 2 O 4 nanoparticles. Mater. Res. Bull. 47(9), 2442–2448 (2012)

    Article  Google Scholar 

  26. Kazan, S.: Magnetic properties of triethylene glycol coated CoFe 2 O 4 and Mn 0.2Co 0.8Fe 2 O 4 NP’s synthesized by polyol method (2012). doi:10.1016/j.arabjc.2011.12.005

  27. Deligöz, H., Baykal, A., Tanrıverdi, E.E., Durmus, Z., Toprak, M.S.: Synthesis, structural and electrical properties of triethylene glycol (TREG) stabilized Mn 0.2Co 0.8Fe 2 O 4 NPs. Mater. Res. Bull. 47(3), 537–543 (2012)

    Article  Google Scholar 

  28. Günay, M., Erdemi, H., Baykal, A., Sözeri, H., Toprak, M.S.: Triethylene glycol stabilized MnFe 2 O 4 nanoparticle: synthesis, magnetic and electrical characterization. Mater. Res. Bull. 48(3), 1057–1064 (2013)

    Article  Google Scholar 

  29. Farea, A.M.M., Kumar, S., Batoo, K.M., Yousef, A., Lee, C.G., Alimuddin: Structure and electrical properties of Co 0.5CdxFe 2.5−xO 4 ferrites. J. Alloy. Compd. 464, 361–369 (2008)

    Article  Google Scholar 

  30. Lakshman, A., Subba Rao, P.S.V., Parvatheeswara Rao, B., Rao, K.H.: Electrical properties of In 3+ and Cr 3+ substituted magnesium–manganese ferrites. J. Phys. D: Appl. Phys. 38, 673–678 (2005)

    Article  ADS  Google Scholar 

  31. Karaoğlu, E., Baykal, A., Erdemi, H., Alpsoy, L., Sözeri, H.: Synthesis and characterization of dl-thioctic acid (DLTA)–Fe 3 O 4 nanocomposite. J. Alloys Compd. 509, 9218–9225 (2011)

    Article  Google Scholar 

  32. Lupeiko, T.G., Lopatina, I.B., Kozyrev, I.V., Derbaremdiker, L.A.: Electrophysical and magnetoelectric properties of ceramic materials of the type piezoelectric-ferrite. Inorg. Mater. 28, 481–485 (1992)

    Google Scholar 

  33. Deligöz, H., Baykal, A., Tanrıverdi, E.E., Durmus, Z., Sozeri, H., Toprak, M.S.: Synthesis, structural and electrical properties of triethylene glycol (TREG) stabilized Mn0.2Co0.8Fe2O4 NPs. Mater. Res. Bull. 47, 537–543 (2012)

    Article  Google Scholar 

  34. Ghodake, J.S., Kambale, R.C., Salvi, S.V., Sawant, S.R., Suryavanshi, S.S.: Electric properties of Co substituted Ni–Zn ferrites. J. Alloy Compd. 486, 830–834 (2009)

    Article  Google Scholar 

  35. Mahalakshmi, S., Srinivasa Manja, K.: AC electrical conductivity and dielectric behavior of nanophase nickel ferrites. J. Alloys Compd. 457, 522–525 (2008)

    Article  Google Scholar 

  36. Verwey, E.J., de Boer, J.H.: Rec. Trans. Chim. Phys. Bas. 55, 531 (1936)

    Article  Google Scholar 

  37. Parvatheeswara Rao, B., Rao, K.H., Sankaranarayana, G., Padurarua, A., Caltun, O.F.: J. Opto. Adv. Mater. 7, 697–700 (2005)

    Google Scholar 

  38. Pardavi-Horvath, M.: Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215–216, 171–183 (2000)

    Article  Google Scholar 

  39. Lakshman, A., Subba Rao, P.S.V., Parvatheeswara Rao, B., Rao, K.H.: J. Phys. D: Appl. Phys. 38, 673–678 (2005)

    Article  ADS  Google Scholar 

  40. Lakshman, A., Rao, K.H., Mendiratta, R.G.: J. Magn. Magn. Mater. 250, 92–97 (2002)

    Article  ADS  Google Scholar 

  41. Baykal, A., Güner, S., Demir, A.: Synthesis and magneto-optical properties of triethylene glycol stabilized Mn 1−x Zn x Fe 2 O 4 nanoparticles. J. Alloy Compd. 619, 5–11 (2015)

    Article  Google Scholar 

  42. Lemine, O.M., Bououdina, M., Sajieddine, M., Al-Saie, A.M., Shafi, M., Khatab, A., Al-hilali, M., Henini, M.: Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe 2 O 4. Physica B 406, 1989–1994 (2011)

    Article  ADS  Google Scholar 

  43. Kaushal, A., Pathak, D., Bedi, R.K., Kaur, D.: Structural, electrical and optical properties of transparent Zn 1− xMgxO nanocomposite thin films. Thin Solid Films 518, 1394–1398 (2009)

    Article  ADS  Google Scholar 

  44. Li, D., Wang, X.P., Fang, Q.F., Wang, J.X., Li, C., Zhuang, Z.: Phase transition associated with the variation of oxygen vacancy/ion distribution in the oxide-ion conductor La 2Mo 2− xWxO 9. Physica Status Solidi A 7, 2270–2278 (2007)

    Article  ADS  Google Scholar 

  45. Taşçıoğlu, İ., Arı, M., Usluc, İ., Koçyiğit, S., Dağdemir, Y., Çorumlu, V., Altındal, Ş.: Temperature dependent conductivity and structural properties of sol–gel prepared holmium doped Bi 2 O 3 nanoceramic powder. Ceram. Int. 38, 6455–6460 (2012)

    Article  Google Scholar 

  46. Kang, Y.J., Park, H.J., Choi, G.M.: The effect of grain size on the low-temperature electrical conductivity of doped CeO 2. Solid State Ionics 179, 1602–1605 (2008)

    Article  Google Scholar 

  47. Djuric, Z.Z., Aleksic, O.S., Nikolic, M.V., Labus, N., Radovanovic, M., Lukovic, M.D.: Structural and electrical properties of sintered Fe 2 O 3/TiO 2 nanopowder mixtures. Ceram. Intl. 40, 15131–15141 (2014)

    Article  Google Scholar 

  48. Guo, X.: Peculiar size effect in nanocrystalline BaTiO 3. Acta Materialia 61, 1748–1756 (2013)

    Article  Google Scholar 

  49. Iqbal, M.J., Ismail, B.: Correlation between structural and electrical properties of Mg 1−2xZnxNixAl 2 O 4 (x = 0.0–0.5) ceramic nanomaterials synthesized by a urea assisted microwave combustion method. J. Alloy. Compd. 504, 440–445 (2010)

    Article  Google Scholar 

  50. Afandiyeva, İ.M., Dökme, İ., Altındal, Ş., Bülbül, M.M., Tataroğlu, A.: Frequency and voltage effects on the dielectric properties and electrical conductivity of Al–TiW– Pd2Si/n-Si structures. Microelectr. Eng. 85, 247–252 (2008)

    Article  Google Scholar 

  51. Ünal, B., Durmus, Z., Baykal, A., Sözeri, H., Toprak, M.S., Alpsoy, L.: L-Histidine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J. Alloys Compd. 505, 172–177 (2010)

    Article  Google Scholar 

  52. Durmus, Z., Kavas, H., Baykal, A., Sozeri, H., Alpsoy, L., Çelik, S.Ü., Toprak, M.S.: Synthesis and characterization of l-carnosine coated iron oxide nanoparticles. J. Alloys Compd. 509, 2555–2561 (2011)

    Article  Google Scholar 

  53. Manjurul Haquea, M., Huqa, M., Hakim, M.A.: Densification, magnetic and dielectric behaviour of Cu-substituted Mg–Zn ferrites. Mater. Chem. Phys. 112, 580–586 (2008)

    Article  Google Scholar 

  54. Erdemi, H., Demir, A., Baykal, A.: Electrical properties of triethylene glycol stabilized Mn x Co 1−x Fe 2 O 4 nanoparticles. J. Inorg. Organomet. Polym. 23, 690–702 (2013)

    Article  Google Scholar 

  55. McCrum, N.G., Read, B.E., Williams, G.: Anelastic and Dielectric Effects in Polymeric Solids. Dover Publications, New York (1991)

    Google Scholar 

  56. Bozkurt, A.: Dielectric and conductivity relaxations in quaternary ammonium polymer. J. Phys. Chem. Solids 63, 685–692 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fatih University under BAP Grant No. P50021301-Y (3146). Md. Amir also thanks the Turkish Research Council for his master studies and foreign student’s scholarship program of 2215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir, M., Erdemi, H., Geleri, M. et al. Electrical Properties of Cu Substituted Fe3O4 Nanoparticles. J Supercond Nov Magn 29, 389–400 (2016). https://doi.org/10.1007/s10948-015-3270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3270-8

Keywords

Navigation