Skip to main content

Advertisement

Log in

Thermodynamic Properties of the Core/Shell Antiferromagnetic Ising Nanocube

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using the effective field theory with correlations, the effects of the exchange interaction on the thermal behaviors of the total magnetization, internal energy, specific heat, entropy, and free energy of a transverse antiferromagnetic Ising nanocube are investigated. The phase diagram is also calculated and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kodama, R.H.: J. Magn. Magn. Mater 200, 359 (1999)

    Article  ADS  Google Scholar 

  2. López-Ortega, A., Tobia, D., Winkler, E., Golosovsky, I.V., Salazar-Alvarez, G., Estradé, S., Estrader, M., Sort, J., González, M.A., Suriñach, S., Arbiol, J., Peiró, F., Zysler, R.D., Baró, M.D., Nogués, J.: J. Am. Chem. Soc. 132, 9398 (2010)

    Article  Google Scholar 

  3. Estrader, M., López-Ortega, A., Estradė, S., Golosovsky, I.V., Salazar-Alvarez, G., Vasilakaki, M., Trohidou, K.N., Varela, M., Stanley, D.C., Sinko, M., Pechan, M.J., Keavney, D.J., Peiró, F., Suriñach, S., Baró M.D.: J. Nogués, Nat. Commun. 4, 2960 (2013)

    Google Scholar 

  4. López-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G.: J. Noguės, Phys Rep. 10.1016/j.physrep.2014.09.007 (2014)

  5. Bader, S.D.: Rev. Modern Phys 78, 1 (2006)

    Article  ADS  Google Scholar 

  6. Habib, A.H., Ondeck, C.L., Chaudhary, P., Bockstaller, M.R., McHenry, M.E.: J. Appl. Phys. 103, 07A307 (2008)

    Article  Google Scholar 

  7. Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., Nogués, J.: Nature 423, 850 (2003)

    Article  ADS  Google Scholar 

  8. Liu, J., Li, Q., Wang, T., Yu, D., Li, Y.: Angew. Chem 116, 5158 (2004)

    Article  Google Scholar 

  9. Gräf, C.P., Birringer, R., Michels, A.: Phys. Rev. B 73, 212401 (2006)

    Article  ADS  Google Scholar 

  10. Maaz, K., Khalid, W., Mumtaz, A., Hasanain, S.K., Liu, J., Duan, J.L. : Physica E 41, 593 (2009)

    Article  ADS  Google Scholar 

  11. Qi, X., Zhong, W., Deng, Y., Au, C., Du, Y.: Carbon 48, 365 (2010)

    Article  Google Scholar 

  12. Zhan, Y., Zhao, R., Lei, Y., Meng, F., Zhong, J., Liu, X., Magn, J.: Magn. Mater 323, 1006 (2011)

    Article  ADS  Google Scholar 

  13. Leite, V. S., Figueiredo, W.: Physica A 350, 379 (2005)

    Article  ADS  Google Scholar 

  14. Şarlı, N., Akbudak, S., Ellialtıoğlu, M. R: Physica B 452, 18 (2014)

    Article  ADS  Google Scholar 

  15. Kocakaplan Y., Keskin, M.: J. Appl. Phys. 116, 093904 (2014)

    Article  ADS  Google Scholar 

  16. Kantar, E., Kocakaplan, Y.: Solid State Commun 177, 1 (2014)

    Article  ADS  Google Scholar 

  17. El Hamri, M., Bouhou, S., Essaoudi, I., Ainane, A., Ahuja, R.: Superlattices Microstruct 80, 151 (2015)

    Article  ADS  Google Scholar 

  18. Garanin, D. A., Kachkachi, H.: Phys. Rev. Lett. 90, 065504 (2003)

    Article  ADS  Google Scholar 

  19. Wang, H., Zhou, Y., Lin, D. L., Wang, C.: Phys. Status Solidi B 232, 254 (2002)

    Article  ADS  Google Scholar 

  20. Iglesias, Ò., Labarta, A.: Physica B 343, 286 (2004)

    Article  ADS  Google Scholar 

  21. Vasilakaki, M., Trohidou, K.N.: Phys. Rev. B 79, 144402 (2009)

    Article  ADS  Google Scholar 

  22. Masrour, R., Bahmad, L., Hamedoun, M., Benyoussef, A., Hlil, E.K.: Solid State Commun. 162, 53 (2013)

    Article  ADS  Google Scholar 

  23. Canko, O., Erdinc, A., Taskin, F., Atis, M.: Phys. Lett. A 375, 3547 (2011)

    Article  ADS  MATH  Google Scholar 

  24. Canko, O., Erdinc, A., Taskin, F., Yildirim, A. F. : J. Magn. Magn. Mater. 324, 508 (2012)

    Article  ADS  Google Scholar 

  25. Şarlı, N.: Physica B 411, 12 (2013)

    Article  ADS  Google Scholar 

  26. Kantar, E., Keskin, M.: J. Magn. Magn. Magn. Mater 349, 165 (2014)

    Article  ADS  Google Scholar 

  27. Taşkın, F., Canko, O., Erdinç, A., Yıldırıma, A. F: Physica A 407, 287 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  28. Bouhou, S., El Hamri, M., Essaoudi, I., Ainane, A., Ahuja, R.: Physica B 456, 142 (2015)

    Article  ADS  Google Scholar 

  29. Sá Barreto, F.C., Fittipaldy, I. P.: Physica A 129, 360 (1985)

    Article  ADS  Google Scholar 

  30. Saber, M.: Chin. J. Phys. 35, 577 (1997)

    Google Scholar 

  31. Saber, A., Ainane, A., Dujardin, F., Saber, M., Steb é, B.: J. Phys. Condens. Matter 11, 2087 (1990)

    Article  ADS  Google Scholar 

  32. Sá Barreto, F.C., Fittipaldy, I.P., Zeks, B.: Ferroelectrics 39, 1103 (1981)

    Article  Google Scholar 

  33. Kaneyoshi, T., Jaščur, M., Fittipaldi, I.P.: Phys. Rev. B 48, 250 (1993)

    Article  ADS  Google Scholar 

  34. Néel, L.: Anneles de Physique 3, 137 (1948)

    Google Scholar 

  35. Yüksel, Y., Aydıner, E., Polat, H.: J. Magn. Magn. Mater. 323, 3168 (2011)

    Article  Google Scholar 

  36. Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Dujardin, F., de Miguel, J. J.: J. Magn. Magn. Mater 324, 2434 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been initiated with the support of URAC: 08, the project RS:02(CNRST) and the Swedish Research Links programme dnr-348-2011-7264 and completed during a visit of A. A. at the Max Planck Institut für Physik Komplexer Systeme Dresden, Germany. The authors would like to thank all the organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ainane.

Appendix: Equations of the Core and Surface Shell Magnetizations

Appendix: Equations of the Core and Surface Shell Magnetizations

Within the framework of the effective field theory with correlations, four longitudinal magnetizations on the core, namely \(m_{c_{1}}^{z}\), \( m_{c_{2}}^{z}\), \(m_{c_{3}}^{z}\), and \(m_{c_{4}}^{z}\), and six longitudinal magnetizations on the surface shell, namely \(m_{s_{1}}^{z}\), \(m_{s_{2}}^{z}\) , \(m_{s_{3}}^{z}\), \(m_{s_{4}}^{z}\), \(m_{s_{5}}^{z}\) and \(m_{s_{6}}^{z}\), can be obtained as:

Magnetization of the central spin c 1:

$$\begin{array}{@{}rcl@{}} m_{c_{1}}^{z} &=&\frac{1}{2^{(2N_{3})}}\sum\limits_{\mu_{1}=0}^{N_{3}}\sum\limits_{\mu_{2}=0}^{N_{3}}C_{\mu _{1}}^{N_{3}}C_{\mu_{2}}^{N_{3}}\left( 1-m_{c_{2}}^{z}\right)^{\mu_{1}}\left( 1+m_{c_{2}}^{z}\right)^{N_{3}-\mu_{1}} \\ &&\times \left( 1-m_{s_{4}}^{z}\right)^{\mu_{2}}\left( 1+m_{s_{4}}^{z}\right)^{N_{3}-\mu_{2}}\times f_{z}(J_{c}(N_{3}-2\mu_{1}) \\ &&+J_{cs}(N_{3}-2\mu_{2})+h,{\Omega}_{c}) \end{array} $$
(19)

Magnetization of the central spin c 2:

$$\begin{array}{@{}rcl@{}} m_{c_{2}}^{z} &=&\frac{1}{2^{(3N_{2})}}\sum\limits_{\mu_{1}=0}^{N_{2}}\sum\limits_{\mu_{2}=0}^{N_{2}}\sum\limits_{\mu _{3}=0}^{N_{2}}C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{2}}\left( 1-m_{c_{1}}^{z}\right)^{\mu_{1}}\left( 1+m_{c_{1}}^{z}\right)^{N_{2}-\mu_{1}} \\ &&\times \left( 1-m_{c_{3}}^{z}\right)^{\mu_{2}}\left( 1+m_{c_{3}}^{z}\right)^{N_{2}-\mu_{2}}\left( 1-m_{s_{5}}^{z}\right)^{\mu_{3}}\left( 1+m_{s_{5}}^{z}\right)^{N_{2}-\mu_{3}} \\ &&\times f_{z}(J_{c}(2N_{2}-2(\mu_{1}+\mu_{2}))+J_{cs}(N_{2}-2\mu_{3})+h,{\Omega}_{c}) \end{array} $$
(20)

Magnetization of the central spin c 3:

$$\begin{array}{@{}rcl@{}} m_{c_{3}}^{z} &=&\frac{1}{2^{(2N_{1}+N_{4})}}\sum\limits_{\mu_{1}=0}^{N_{4}}\sum\limits_{\mu _{2}=0}^{N_{1}}\sum\limits_{\mu_{3}=0}^{N_{1}}C_{\mu_{1}}^{N_{4}}C_{\mu_{2}}^{N_{1}}C_{\mu_{3}}^{N_{1}}\left( 1-m_{c_{2}}^{z}\right)^{\mu_{1}}\left( 1+m_{c_{2}}^{z}\right)^{N_{4}-\mu_{1}} \\ &&\times \left( 1-m_{c_{4}}^{z}\right)^{\mu_{2}}\left( 1+m_{c_{4}}^{z}\right)^{N_{1}-\mu_{2}}\left( 1-m_{s_{6}}^{z}\right)^{\mu_{3}}\left( 1+m_{s_{6}}^{z}\right)^{N_{1}-\mu_{3}} \\ &&\times f_{z}(J_{c}(N_{4}+N_{1}-2(\mu_{1}+\mu_{2}))+J_{cs}(N_{1}-2\mu_{3})+h,{\Omega}_{c}) \end{array} $$
(21)

Magnetization of the central spin c 4:

$$\begin{array}{@{}rcl@{}} m_{c_{4}}^{z} &=&\frac{1}{2^{(N_{6})}}\sum\limits_{\mu_{1}=0}^{N_{6}}C_{\mu_{1}}^{N_{6}}\left( 1-m_{c_{3}}^{z}\right) ^{\mu_{1}}\left( 1+m_{c_{3}}^{z}\right)^{N_{6}-\mu_{1}} \\ &&\times f_{z}(J_{c}(N_{6}-2\mu_{1})+h,{\Omega}_{c}) \end{array} $$
(22)

Magnetization of the surface spin s 1:

$$\begin{array}{@{}rcl@{}} m_{s_{1}}^{z}&=&\frac{1}{2^{N_{3}}}\sum\nolimits_{\mu_{1}=0}^{N_{3}}C_{\mu_{1}}^{N_{3}}\left( 1-m_{s_{2}}^{z}\right) ^{\mu_{1}}\!\left( 1+m_{s_{2}}^{z}\right)^{N_{3}-\mu_{1}} \\&&\times f_{z}(J_{s}(N_{3}-2\mu_{1})+h,{\Omega}_{s}) \end{array} $$
(23)

Magnetization of the surface spin s 2:

$$\begin{array}{@{}rcl@{}} m_{s_{2}}^{z} &=&\frac{1}{2^{(2N_{1}+N_{2})}}\sum\limits_{\mu_{1}=0}^{N_{1}}\sum\limits_{\mu _{2}=0}^{N_{1}}\sum\limits_{\mu_{3}=0}^{N_{2}}C_{\mu_{1}}^{N_{1}}C_{\mu_{2}}^{N_{1}}C_{\mu_{3}}^{N_{2}}\left( 1-m_{s_{1}}^{z}\right)^{\mu_{1}}\left( 1+m_{s_{1}}^{z}\right)^{N_{1}-\mu_{1}} \\ &&\times \left( 1-m_{s_{3}}^{z}\right)^{\mu_{2}}\left( 1+m_{s_{3}}^{z}\right)^{N_{1}-\mu_{2}}\left( 1-m_{s_{4}}^{z}\right)^{\mu_{3}}\left( 1+m_{s_{4}}^{z}\right)^{N_{2}-\mu_{3}} \\ &&\times f_{z}(J_{s}(2N_{1}+N_{2}-2(\mu_{1}+\mu_{2}+\mu_{3}))+h,{\Omega}_{s}) \end{array} $$
(24)

Magnetization of the surface spin s 3:

$$\begin{array}{@{}rcl@{}} m_{s_{3}}^{z} &=&\frac{1}{2^{2N_{2}}}\sum\nolimits_{\mu_{1}=0}^{N_{2}}\sum\nolimits_{\mu_{2}=0}^{N_{2}}C_{\mu _{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}}\left( 1-m_{s_{2}}^{z}\right)^{\mu_{1}} \\ &&\times \left( 1+m_{s_{2}}^{z}\right)^{N_{2}-\mu_{1}}\!\left( 1-m_{s_{5}}^{z}\right)^{\mu_{2}}\!\left( 1+m_{s_{5}}^{z}\right)^{N_{2}-\mu _{2}}\\&&\times f_{z}(J_{s}(2N_{2}-2(\mu_{1}+\mu_{2}))+h,{\Omega}_{s}) \end{array} $$
(25)

Magnetization of the surface spin s 4:

$$\begin{array}{@{}rcl@{}} m_{s_{4}}^{z} &=&\frac{1}{2^{(N_{1}+2N_{2})}}\sum\limits_{\mu_{1}=0}^{N_{1}}\sum\limits_{\mu _{2}=0}^{N_{2}}\sum\limits_{\mu_{3}=0}^{N_{2}}C_{\mu_{1}}^{N_{1}}C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{2}}\left( 1-m_{c_{1}}^{z}\right)^{\mu_{1}}\left( 1+m_{c_{1}}^{z}\right)^{N_{1}-\mu_{1}} \\ &&\times \left( 1-m_{s_{2}}^{z}\right)^{\mu_{2}}\left( 1+m_{s_{2}}^{z}\right)^{N_{2}-\mu_{2}}\left( 1-m_{s_{5}}^{z}\right)^{\mu_{3}}\left( 1+m_{s_{5}}^{z}\right)^{N_{2}-\mu_{3}} \\ &&\times f_{z}(J_{s}(2N_{2}-2(\mu_{2}+\mu_{3}))+J_{cs}(N_{1}-2\mu_{1})+h,{\Omega}_{s}) \end{array} $$
(26)

Magnetization of the surface spin s 5:

$$\begin{array}{@{}rcl@{}} m_{s_{5}}^{z} &=&\frac{1}{2^{(3N_{1}+N_{2})}}\sum\limits_{\mu_{1}=0}^{N_{1}}\sum\limits_{\mu _{2}=0}^{N_{1}}\sum\limits_{\mu_{3}=0}^{N_{2}}\sum\limits_{\mu_{4}=0}^{N_{1}}C_{\mu_{1}}^{N_{1}}C_{\mu _{2}}^{N_{1}}C_{\mu_{3}}^{N_{2}}C_{\mu_{4}}^{N_{1}} \\ &&\times\left( 1-m_{c_{2}}^{z}\right)^{\mu_{1}}\left( 1+m_{c_{2}}^{z}\right)^{N_{1}-\mu_{1}} \left( 1-m_{s_{3}}^{z}\right)^{\mu_{2}} \\ &&\times\left( 1+m_{s_{3}}^{z}\right)^{N_{1}-\mu_{2}}\left( 1-m_{s_{4}}^{z}\right)^{\mu_{3}}\left( 1+m_{s_{4}}^{z}\right)^{N_{2}-\mu_{3}} \\ &&\times \left( 1-m_{s_{6}}^{z}\right)^{\mu_{4}}\left( 1+m_{s_{6}}^{z}\right)^{N_{1}-\mu_{4}}f_{z}(J_{s}(2N_{1}+N_{2}\\&&\qquad-2(\mu_{2}+\mu_{3}+\mu_{4})) \\ &&+J_{cs}(N_{1}-2\mu_{1})+h,{\Omega}_{s}) \end{array} $$
(27)

Magnetization of the surface spin s 6:

$$\begin{array}{@{}rcl@{}} m_{s_{6}}^{z} &=&\frac{1}{2^{(N_{1}+N_{4})}}\sum\limits_{\mu_{1}=0}^{N_{1}}\sum\limits_{\mu_{2}=0}^{N_{4}}C_{\mu _{1}}^{N_{1}}C_{\mu_{2}}^{N_{4}}\left( 1-m_{c_{3}}^{z}\right)^{\mu_{1}}\\&&\times\left( 1+m_{c_{3}}^{z}\right)^{N_{1}-\mu _{1}} \left( 1-m_{s_{5}}^{z}\right)^{\mu_{2}} \\ &&\times \left( 1+m_{s_{5}}^{z}\right)^{N_{4}-\mu_{2}}f_{z}(J_{s}(N_{4}-2\mu_{2})\\&&+J_{cs}(N_{1}-2\mu_{1})+h,{\Omega}_{s}) \end{array} $$
(28)

With N 1=1, N 2=2, N 3=3, N 4=4 and N 6=6 denote respectively the coordination number, and \({C_{k}^{l}}\) are the binomial coefficients \({C_{k}^{l}}=\frac {l!}{k!(l-k)!}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamri, M.E., Bouhou, S., Essaoudi, I. et al. Thermodynamic Properties of the Core/Shell Antiferromagnetic Ising Nanocube. J Supercond Nov Magn 28, 3127–3133 (2015). https://doi.org/10.1007/s10948-015-3143-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3143-1

Keywords

Navigation