Skip to main content
Log in

Magnetic and Optical Properties of CoFe2O4 Nanoparticles Synthesized by Reverse Micelle Microemulsion Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

CoFe2O4 nanoparticles were successfully synthesized by reverse micelle microemulsion method. The X-ray diffraction (XRD) results show that all samples have a spinel ferrite structure with calculated crystallite sizes in the range of 3.6–21.7 nm. Increasing calcination temperature from 650 to 900 °C can increase the crystallization of the powders. Transmission electron microscopy (TEM) images reveal the spherical shape of nanoparticles with serious agglomeration. Particle sizes of the samples calcined at 700, 800, and 900 °C estimated from TEM images are 9.7 ± 2.1, 10.6 ± 1.6, and 14.9 ± 0.4 nm, respectively. The UV–visible spectroscopy results show a decrease in the energy band gap (E g) from 4.3 to 3.0 eV with increasing crystallite size. The room temperature magnetic properties of the calcined CoFe2O4 nanoparticles performed by vibrating sample magnetometry (VSM) indicate ferrimagnetic behavior in all samples. In addition, the specific magnetizations measured at the maximum field of ±30 kOe (M max) and coercivity (H c) are increased with increasing calcination temperature. These characteristics of the prepared CoFe2O4 nanoparticles make them a promising magnetically separable photocatalyst for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sugimoto, M., Am, J.: Ceram. Soc 82, 269 (1999)

    Article  Google Scholar 

  2. Safarik I., Safarikova M.: In: Hofmann H., Rahman Z., Schubert U. (eds.) : Nanostructured materials, pp. 1e23. Springer Wien (2002)

  3. Laokul, P., Amornkitbamrung, V., Seraphin, S., Maensiri, S.: Curr. Appl. Phys 11, 101 (2011)

    Article  ADS  Google Scholar 

  4. Reetz, M.T., Maase, M.: Adv. Mater 11, 773 (1999)

    Article  Google Scholar 

  5. Singhal, S., Sharma, R., Singh, C., Bansal, S.: Indian J. Mater. Sci 2013, 1–6 (2013)

    Article  ADS  Google Scholar 

  6. Su, M., et al.: J. Hazard Mater 95, 211–212 (2012)

    ADS  Google Scholar 

  7. Rashad, M.M., Mohamed, R.M., Ibrahim, M.A., Ismail, L.F.M, Abdel-Aal, E.A.: Adv. Powder. Tech 23, 315 (2012)

    Article  Google Scholar 

  8. Zhu, Z., Li, X., Zhao, Q., Shi, Y., Li, H., Chen, G.: J. Nanopart. Res 13, 2147 (2011)

    Article  Google Scholar 

  9. Hunyek, A., Sirisathitkul, C., Harding, P.: Adv. Mater 659, 93–34 (2010)

    Google Scholar 

  10. George, M., John, A.M., Nair, S.S., Joy, P.A.: J. Magn. Mater 302, 190 (2006)

    Article  ADS  Google Scholar 

  11. Yeong, K., Don, K., Choong, L.: Physical B. 42, 337 (2003)

    ADS  Google Scholar 

  12. Zhang, Y., Yang, Z., Yin, D., Liu, Y., Fei, C., Xiong, R., Shi, J., Yin, G.: J. Magn. Magn. Mater 332, 3475 (2010)

    Google Scholar 

  13. Juan, Y., Shaobo, M., Jiaorong, N., Wenxuan, C., Xinyu, S., Jiming, H., Guangming, H., Tonga, H.: Coll. Surf. A 340, 109 (2009)

    Article  Google Scholar 

  14. Elliott, D.W., Zhang, W.X.: Environ. Sci. Technol 35, 4922 (2001)

    Article  ADS  Google Scholar 

  15. Subhasis, R., John, P., Baldev, R.: J. Mater. Chem. Phys 124, 264 (2010)

    Article  Google Scholar 

  16. Husein, M.M., Nassar, N.N.: Curr. Nanosci 4, 370 (2008)

    Article  ADS  Google Scholar 

  17. Zhao, L., et al.: J. Solid State Chem 181, 245 (2008)

    Article  ADS  Google Scholar 

  18. Zori, M.H.: J. Inorg. Organomet. Polym 21, 81 (2011)

    Article  Google Scholar 

  19. Naseri, M.G., Saion, E.B., Ahanger, H.A., Hashim, M., Shaari, A.H.: Powder Technol 212, 80 (2011)

    Article  Google Scholar 

  20. Suryanarayana, C., Norton, M.G.: X-ray diffraction: a practical approach. Plenum Press, New York (1998)

    Book  Google Scholar 

  21. Choodamadi, C., Nagabhushana, G.P., Rudraswamy, B., Chandrappa, G.T.: Mater. Lett 116, 227 (2014)

    Article  Google Scholar 

  22. Chen, Y., Ruan, M., Jiang, Y.F., Cheng, S.G., Li, W.: J. Alloy.Compd 493, L36 (2010)

    Article  Google Scholar 

  23. Maensiri, S., et al.: Cryst. Growth Des 7(5), 950 (2007)

    Article  Google Scholar 

  24. Holinsworth, B.S., et al.: App. Phys. Lett 103, 82406 (2013)

    Article  Google Scholar 

  25. Meinert, M., Reiss, G.: J. Phys. Condens. Matter. 26, 115503 (2014)

    Article  Google Scholar 

  26. Zhang, Q.C., Yu, Z.H., Li, G., Ye, Q.M., Lin, J.H.: J. Alloy. Comp 477, 81 (2009)

    Article  Google Scholar 

  27. Wei, S.H., Zhang, S.B.: Phys. Rev. B 63, 045112 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  28. El-Hagary, M., Matar, A., Shaaban, E.R., Emam-Ismail, M.: Mater. Res. Bull 48, 2279 (2013)

    Article  Google Scholar 

  29. Wang, X., Zhang, Y., Wu, Z.: Mater. Lett 64, 486 (2010)

    Article  Google Scholar 

  30. Manzoor, U., Islam, M., Tabassam, L., Rahman, S.U.: Physica E 41, 1669 (2009)

    Article  ADS  Google Scholar 

  31. Banerjee, S., Maity, A.K., Chakravorty, D.: J. Appl. Phys. 87(12), 8541 (2000)

    Article  ADS  Google Scholar 

  32. Kim, T.W., Cho, C.H., Kim, B.H., Park, S.J.: Appl. Phys. Lett 88, 23102 (2006)

    Article  ADS  Google Scholar 

  33. Gaikwad, R.S., Chae, S.Y., Mane, R.S., Han, S.H., Joo, O.S.: Int. J. Electrochem 2011, 1–6 (2011)

    Article  Google Scholar 

  34. Ahmed, S.R., Kofinas, P.: Macromolecules 35, 3338 (2003)

    Article  ADS  Google Scholar 

  35. Kodama, R.H., Berkowitz, A.E., Mcniff, E.J., Foner, S.: Phys. Rev. Lett 77, 394 (1996)

    Article  ADS  Google Scholar 

  36. Sharifi, I., Shokrollahi, H., Doroodmand, M.M., Safi, R.: J. Magn. Magn. Mater 324, 1854 (2012)

    Article  ADS  Google Scholar 

  37. Rajendran, M., et al.: J. Magn. Magn. Mater 232, 71 (2001)

    Article  ADS  Google Scholar 

  38. Cullity, B.D.: Introduction to magnetic materials. Reading, Addison -Wesley Publishing Company, Reading, Massachusetts (1972)

  39. Gajdhiye, N.G., Prasad, S., Balaji, G.: IEEE Trans. Mang 35, 2155 (1999)

    ADS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Integrated Nanotechnology Research Center, Khon Kaen University, and Mahasarakham University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paveena Laokul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laokul, P., Arthan, S., Maensiri, S. et al. Magnetic and Optical Properties of CoFe2O4 Nanoparticles Synthesized by Reverse Micelle Microemulsion Method. J Supercond Nov Magn 28, 2483–2489 (2015). https://doi.org/10.1007/s10948-015-3068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3068-8

Keywords

Navigation