Skip to main content
Log in

Electronic Structure and Ferromagnetic Properties of MgDoped Cubic BN from First-Principles Calculation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The electronic properties and ferromagnetic coupling interactions of Mg-doped cubic boron nitride (BN) have been investigated by using first-principles calculation method. The calculated results show that Mg-doped BN takes ferromagnetic ground state with magnetic moment of 0.565 μ B which mainly comes from the unpaired 2p electron of N atoms around the Mg dopant. The magnetic coupling between Mg dopants induced moments is long-ranged. It also was found that the Mg-doped BN system has high spin polarization near the Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294 (5546), 1488–1495 (2001)

    Article  ADS  Google Scholar 

  2. Awschalom, D.D., Flatte, M.E.: Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007)

    Article  Google Scholar 

  3. Saito, H., Zayets, V., Yamagata, S., Ando, K.: Room-temperature ferromagnetism in a II-VI diluted magnetic semiconductor Zn1−x CrxTe. Phys. Rev. Lett. 90(20), 207202 (2003)

    Article  ADS  Google Scholar 

  4. Sluiter, M.H.F., Kawazoe, Y., Sharma, P., Inoue, A., Raju, A.R., Rout, C., Waghmare, U.V.: First principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature. Phys. Rev. Lett. 94(18), 187204 (2005)

    Article  ADS  Google Scholar 

  5. Gupta, A., Cao, H.T., Parekh, K., Rao K.V., Raju, A.R., Waghmare, U.V.: Room temperature ferromagnetism in transition metal (V, Cr, Ti) doped In2 O 3. Appl. Phys. 101(09N513) (2007)

  6. Yang, S.Y., Man, B.Y., Liu, M., Chen, C.S., Gao, X.G., Wang, C.C., Hu, B.: Structural, optical and magnetic properties of Zn1−xCoxO dilute magnetic semiconductors thin films by pulsed laser deposition. Phys. B 405(18), 4027–4031 (2010)

    Article  ADS  Google Scholar 

  7. Pan, H., Yi, J.B., Shen, L., Wu, R.Q., Yang, J.H., Lin, J.Y., Feng, Y.P., Ding, J., Van, L.H., Yin, J.H.: Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett. 99(12), 127201 (2007)

    Article  ADS  Google Scholar 

  8. Tiwari, A., Snure, M., Kumar, D., Abiade, J.T.: Ferromagnetism in Cu-doped ZnO films: role of charge carriers. Appl. Phys. Lett. 92(6), 062509 (2008)

    Article  ADS  Google Scholar 

  9. Keavney, D.J., Buchholz, D.B., Ma, Q., Chang, R.P.H.: Where does the spin reside in ferromagnetic Cu-doped ZnO?. Appl. Phys. Lett. 91(1), 012501 (2007)

    Article  ADS  Google Scholar 

  10. Chang, G.S., Forrest, J., Kurmaev, E.Z., Morozovska, A.N., Glinchuk, M.D., McLeod, J.A., Moewes, A., Surkova, T.P., Nguyen, H.H.: Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films. Phys. Rev. B. 85(16), 165319 (2012)

    Article  ADS  Google Scholar 

  11. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287(5455), 1019–1022 (2000)

    Article  ADS  Google Scholar 

  12. Dietl, T.: Origin and control of ferromagnetism in dilute magnetic semiconductors and oxides (invited). J. Appl. Phys. 103(7), 07D111 (2008)

    Article  Google Scholar 

  13. Kaspar, C., Droubay, T., Heald, S.M., Engelhard, M.H., Nachimuthu, P., Chambers, S.A.: Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B. 77(20), 201303 (2008)

    Article  ADS  Google Scholar 

  14. Xiong, J., Guo, P., Guo, F., Sun, X.L., Gu, H.S.: Room temperature ferromagnetism in Mg-doped AlN semiconductor films. Mater. Lett. 117, 276–278 (2014)

    Article  Google Scholar 

  15. Lin, Y.T., Wadekar, P.V., Kao, H.S., Chen, T.H., Huang, H.C., Ho, N.J., Chen, Q.Y., Tu, L.W.: Above room-temperature ferromagnetism of Mn delta-doped GaN nanorods. Appl. Phys. Lett. 104(6), 062414 (2014)

    Article  ADS  Google Scholar 

  16. Chen, Y.F., Mi, W.B., Chen, G.F., Song, Q.G., Guo, S.Q.: Nitrogen-vacancy induced intrinsic ferromagnetism and half-metallicity in BN. Comput. Mater. Sci. 81, 212–215 (2014)

    Article  Google Scholar 

  17. Evans, D.A., McGlynn, A.G., Towlson, B.M., Gunn, M., Jones, D., Jenkin, T.E., Winter, R., Poolton, N.R.J.: Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence. J. Phys.: Condens. Matter. 20(7), 075233 (2008)

    ADS  Google Scholar 

  18. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clarke, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 14(11), 2717–2744 (2002)

    ADS  Google Scholar 

  19. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 41 (7892(R)) (1990)

  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  ADS  Google Scholar 

  21. Fischer, T.H., AlmlÖf, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96(24), 9768–9774 (1992)

    Article  Google Scholar 

  22. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  23. Kupcik, V., Grochowski, J., Serda, P.: Twinning model for a new pseudo-hexagonal BN. Z. für Krist.-Cryst. Mater. 209(3), 236–238 (1994)

    Google Scholar 

  24. Krstajić, P.M., Peeters, F.M., Ivanov, V.A., Fleurov, V., Kikoin, K.: Double-exchange mechanisms for Mn-doped III-V ferromagnetic semiconductors. Phys. Rev. B 70(19), 195215 (2004)

    Article  ADS  Google Scholar 

  25. Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4(2), 173–179 (2005)

    Article  ADS  Google Scholar 

  26. Coey, J.M.D., Wongsaprom, K., Alaria, J., Venkatesan, M.: Charge-transfer ferromagnetism in oxide nanoparticles. J. Phys. D: Appl. Phys. 41(13), 134012 (2008)

    Article  ADS  Google Scholar 

  27. Zhang, C.W., Yan, S.S.: First-principles study on ferromagnetism in Mg-doped SnO2. Appl. Phys. Lett. 95(23), 232108 (2009)

    Article  ADS  Google Scholar 

  28. Liu, Y., Wang, G., Wang, S.C., Yang, J.H., Chen, L., Qin, X.B., Song, B., Wang, B.Y., Chen, X.L.: Defect-induced magnetism in neutron irradiated 6H-SiC single crystals. Phys. Rev. Lett. 106(8), 087205 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is financially supported the Fundamental Research Funds for the Central Universities (3122014K004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyu Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Guo, Y., Song, Q. et al. Electronic Structure and Ferromagnetic Properties of MgDoped Cubic BN from First-Principles Calculation. J Supercond Nov Magn 28, 2425–2430 (2015). https://doi.org/10.1007/s10948-015-3044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3044-3

Keywords

Navigation