Skip to main content
Log in

Simulation of Magnetotransport Properties of Ferromagnetic/Antiferromagnetic Multilayers of Manganites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, magnetic and magnetotransport properties of ferromagnetic (FM)/antiferromagnetic (AF) (La2/3Ca1/3MnO3/La1/3Ca2/3MnO3)n (n = 1, 3, 5, 8) manganite multilayers using the standard Monte Carlo method were studied. Simulations of a three-dimensional classical Heisenberg model implemented with a single spin-flip Metropolis dynamics were performed. The Hamiltonian included four different superexchange interactions, according with the two different types of ions Mn3+ and Mn4+. Also, the orbital differences accounting for the Mn3+ ions were considered. Likewise, the Hamiltonian included terms dealing with magnetocrystalline anisotropy and the influence of an external magnetic field. Samples were simulated with dimensions L 2(d FM + d AF), where L stands for the lateral dimension along which periodic boundary conditions were implemented and d F M and d A F stand for the thicknesses of FM and AF layers, respectively, with free boundary conditions. In particular, low-temperature results reveal the behavior of the magnetoresistance depending of the thickness and the number of bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Juhong, M., Songliu, Y., Guangming, R., Gongqi, Y.: Electrical transport and giant magnetoresistance in (1 - x) La0.67Ca0.33 MnO3/x CuO composites. J. Rare Earths 25, 204–209 (2007)

    Google Scholar 

  2. Hwang, H., Cheong, S., Radaelli, P., Marezio, M., Batlogg, B.: Scaling of the temperature dependent Hall effect in La2−x Sr x CuO4. Phys. Rev. Lett 5, 914–917 (1995)

    Article  ADS  Google Scholar 

  3. Senis, R., Laukhin, V., Martínez, B., Fontcuberta, J., Obradors, X., Arsenov, A., Mukovski, Y.: Pressure and magnetic-field effects on charge ordering in La0.9Sr0.1MnO3. Phys. Rev. B 57, 14680–14683 (1998)

    Article  ADS  Google Scholar 

  4. Kambhala, N., Angappane, S.: Anisotropic magnetoresistance studies of polycrystalline La0.67Ca0.33MnO3. Physica B 411, 72–76 (2013)

    Article  ADS  Google Scholar 

  5. Zener, C.: Interaction between the d-Shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev 82, 403–405 (1951)

    Article  ADS  Google Scholar 

  6. Bishop, A., Ridder, H.: Theory of colossal magnetoresistance. Curr. Opin. Solid State Mater. Sci 2, 244–251 (1997)

    Article  ADS  Google Scholar 

  7. Rao, C.N.R.: Metal–insulator transitions and giant magnetoresistance in perovskite oxides. Philos. Trans. R. Soc. London Ser A: Math. Phys. Sci 256, 23–39 (1998)

    Article  ADS  Google Scholar 

  8. Zener, C.: Interaction between the d Shells in the transition metals. Phys. Rev 81, 440–444 (1951)

    Article  ADS  MATH  Google Scholar 

  9. Feng, J., Zhao, K., Huang, Y., Zhao, S., Lu, J.Z.H., Han, X., Zhan, W., Wong, H.: Magnetoresistance in La2/3Ca1/3MnO3/ La2/3Sr1/3CoO3 bilayers. Physica B 369, 261–265 (2005)

    Article  ADS  Google Scholar 

  10. Venimadhav, A., Hegde, M., Rawat, R., Das, I., Marssi, M.E.: Enhancement of magnetoresistance in La0.67Ca0.33MnO3/ Pr0.7Ca0.3MnO3 epitaxial multilayers. J. Alloys. Comp 326, 270–274 (2001)

    Article  Google Scholar 

  11. Xiong, C., Xiong, Y., Meng, G., Jian, Z., Mai, Y., Xu, W., Xiong, J., Zhang, L., Ren, Z., Zhang, J., Pi, H., Xia, Z., Yuan, S.: Structural study and magnetoresistance effect of epitaxial La0.67Sr0.33MnO3−δ and Pr0.7Ca0.3MnO3−δ multilayer films. Physica B 390, 28–33 (2007)

    Article  ADS  Google Scholar 

  12. Şen, C., Alvarez, G., Moreo, A., Dagotto, E.: Unbiased Monte Carlo simulations of realistic models: colossal magnetoresistive manganites. Physics Procedia 7, 39–51 (2010)

    Article  ADS  Google Scholar 

  13. Alonso, J., Gutiérrez, J., Barandiarán, J.M., Bermejo, F.J., Brey, L.: Monte Carlo simulations of magnetic order in Fe-doped manganites. Physica B 403, 394–397 (2008)

    Article  ADS  Google Scholar 

  14. Pattabiraman, M., Adepu, R., Singh, N., Venkatesh, R., Angappane, S., Rama, N., Rangarajan, G.: Phase competition driven temperature broadening of colossal magnetoresistance in La0.815Sr0.185MnO3. J. Alloys. Comp 452, 230–233 (2008)

    Article  Google Scholar 

  15. Zutic, I., Fabian, J., Sarma, S.: Spintronics: fundamentals and applications. Rev. Modern Phys 76, 323–410 (2004)

    Article  ADS  Google Scholar 

  16. Gomez, M., Campillo, G., Ramírez, J., Prieto, P., Hoffmann, A., Guimpel, J., Haberkorn, N., Condo, A., Lovey, F.: Magnetotransport properties in epitaxial exchange-biased LaCaMnO/ LaCaMnO superlattices. IEEE Trans. Magn. 42, 2981–2983 (2006)

    Article  ADS  Google Scholar 

  17. Walter, T., Müller, K., Dörr, K., Sahana, M., Nenkov, K., Brand, K., Schultz, L.: Magnetoresistance of heteroepitaxial La0.7Sr0.3MnO3/SrTiO3 multilayers. Sens. Actuators A 91, 184–187 (2001)

    Article  Google Scholar 

  18. Restrepo-Parra, E., Salazar-Enríquez, C., Londoño-Navarro, J., Jurado, J., Restrepo, J.: Magnetic phase diagram simulation of La1−x Ca x MnO3 system by using Monte Carlo, Metropolis algorithm and Heisenberg model. J. Mag. Mag. Mater 323, 1477–1483 (2011)

    Article  ADS  Google Scholar 

  19. Sun, J., Abraham, D., Rao, R., Eom, C.: Thickness dependent magnetotransport in ultra-thin manganite films. Appl. Phys. Lett 74, 3017–3019 (1999)

    Article  ADS  Google Scholar 

  20. Christides, C., Moutis, N., Komninou, P., Kehagias, T., Nouet, G.: Dependence of exchange bias energy on spin projections at (La, Ca)MnO3 ferromagnetic/antiferromagnetic interfaces. J. Appl. Phys 92, 397–405 (2002)

    Article  ADS  Google Scholar 

  21. Lederman, D., Ramírez, R., Kiwi, M.: Monte Carlo simulations of exchange bias of ferromagnetic thin films on FeF2 (110). Phys. Rev. B 70, 184422 (2004)

    Article  ADS  Google Scholar 

  22. Nicolodi, S., Nagamine, L., Viegas, A., Schmidt, J., Pereira, L., Deranlot, C., Petroff, F., Geshev, J.: Copper spacer thickness dependence of the exchange bias in IrMn/Cu/Co ultrathin films. J. Magn. Magn. Mater 316, e97–e100 (2007)

    Article  ADS  Google Scholar 

  23. Laval, M., Luders, U., Bobo, J.: Exchange bias and perpendicular anisotropy study of ultrathin Pt–Co–Pt–IrMn multilayers sputtered on float glass. J. Mag. Mag. Mater 316, 147–150 (2007)

    Article  ADS  Google Scholar 

  24. Pignard, S., Vincent, H., Senateur, J., Frohlich, K., Souc, J.: Effect of crystallinity on the magnetoresistive properties of La0.8MnO3−δ thin films grown by chemical vapor deposition. J. Appl. Phys 73, 999–1001 (1998)

    Google Scholar 

  25. Pietambaram, S.V., Kumar, D., Singh, R.K., Lee, C.B.: Magnetoresistance behavior in La0.7Ca x MnO3 (x = 0, 0.2, and 0.3) thin films. Phys. Rev. B 58, 8182–8185 (1998)

    Article  ADS  Google Scholar 

  26. Ziese, M., Srinitiwarawong, C.: Extraordinary Hall effect in La0.33Ca0.67MnO3 and La0.33Ba0.67MnO3. Europhys. Lett 45, 256–262 (1999)

    Article  ADS  Google Scholar 

  27. Vlasko-Vlasov, V., Lin, Y., Miller, D., Welp, U., Crabtree, G., Nikitenko, V.: Direct magneto-optical observation of a structural phase transition in thin films of manganites. Phys. Rev. Lett 84, 2239–2242 (2000)

    Article  ADS  Google Scholar 

  28. Kawasaki, M., Izumi, M., Konishi, Y., Manako, T., Tokura, Y.: Perfect epitaxy of perovskite manganite for oxide spin-electronics. Mater. Sci. Eng., B 63, 49–57 (1999)

    Article  Google Scholar 

  29. Li, K., Qi, Z., Li, X., Zhu, J., Zhang, Y.: Growth, structural characteristics and magnetoresistance in La-Ca-Mn-O thin films prepared by dc magnetron sputtering. Thin Solid Films 304, 386–391 (1997)

    Article  ADS  Google Scholar 

  30. Izumi, M., Ogimoto, Y., Konishi, Y., Manako, T., Kawasaki, M., Tokura, Y.: Perovskite superlattices as tailored materials of correlated electrons. Mater. Sci. Eng.: B 84, 53–57 (2001)

    Article  Google Scholar 

  31. Lin, C., Millis, A.J.: Theory of manganite superlattices. Phys. Rev. B 78, 184405 (2008)

    Article  ADS  Google Scholar 

  32. Panagiotopoulos, I., Christides, C., Niarchos, D., Pissas, M.: Magneto-transport and exchange biasing in La-Ca-Mn-O compositionally modulated ferromagnetic/antiferromagnetic multilayers. J. Appl. Phys 87, 3926–3930 (2000)

    Article  ADS  Google Scholar 

  33. Li, P., Yuan, S., Wang, X., Wang, Y., Tian, Z., He, J., Yuan, S., Liu, K., Ying, S., Wang, C.: Effect of Coulomb blockade on the low-temperature resistivity minimum of nanomanganite La2/3Ca1/3MnO3. Solid State Comm 146, 514–517 (2008)

    Article  ADS  Google Scholar 

  34. Izumi, M., Murakami, Y., Konishi, Y., Manako, T., Kawasaki, M., Tokura, Y.: Phys. Rev. B 60, 1211–1215 (1999)

    Article  ADS  Google Scholar 

  35. Steenbeck, K., Eick, T., Kirsch, K., Schmidt, H.-G., Steinbeiß, E.: Tunneling-like magnetoresistance in bicrystal La0.8Sr0.2MnO3−δ thin films. Appl. Phys. Lett 73, 2506–2508 (1998)

    Article  ADS  Google Scholar 

  36. de Andrés, A., García-Hernández, M., Martínez, J., Prieto, C.: Superlattices of magnetoresistive Ca- and Sr-doped manganese perovskites: interface effects. J. Magn. Magn. Mater. 294, e115–e118 (2005)

    Article  ADS  Google Scholar 

  37. Meiklejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev 102, 1413–1414 (1956)

    Article  ADS  Google Scholar 

  38. Nogués, J., Schuller, I.K.: Exchange bias. J. Mag. Mag. Mater 192, 203–232 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the financial support of the Dirección Nacional de Investigaciones of the National University during the course of this research under project 10709 “Grupo PCM Computational Applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Restrepo-Parra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restrepo-Parra, E., Londoño-Navarro, J. & Arbeláez, O.D. Simulation of Magnetotransport Properties of Ferromagnetic/Antiferromagnetic Multilayers of Manganites. J Supercond Nov Magn 28, 151–156 (2015). https://doi.org/10.1007/s10948-014-2827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2827-2

Keywords

Navigation