Skip to main content
Log in

Improved Magnetic Properties of Microwave-Processed Mn0.5Zn0.5Fe2O4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Single-phase nanoparticles of Mn0.5Zn0.5Fe2 O 4 (MZF) with improved magnetic properties were prepared from the precursor (formed by chemical route) by microwave processing technique at 500 C in only 3 min. Crystallographically, these were found to be of spinel phase. Using Debye-Scherrer formula, the particle size of conventionally sintered powder is estimated to be about 20 nm, whereas that of microwave processed is nearly 50 nm with improved grain size. The field emission scanning electron (FESEM) and transmission electron (TEM) micrographs revealed the particles in microwave-processed samples to be spherical in shape and confirmed the sample size (to be nearly 50 nm). Room temperature magnetization measurement of conventionally sintered samples (by vibrating sample magnetometer (VSM)) showed their superparamagnetic nature with saturation magnetization of nearly 19 emu/g. The microwave-processed samples showed improved saturation magnetization of nearly 36 emu/g, which is even better than the reported value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ibrahim, E.M.M.: The effect of sintering time and temperature on the electrical properties of MnZn ferrites. Appl. Phys. A 89, 203 (2007)

    Article  ADS  Google Scholar 

  2. Fukuda, Y., Nagata, S., Echizenya, K.: Electrical conductivity of MnZn ferrite single crystals with a small number of Fe 2+ions. J. Magn. Magn. Mater. 279, 325 (2004)

    Article  ADS  Google Scholar 

  3. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Application of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167 (2003)

    Article  ADS  Google Scholar 

  4. Son, S., Swaminathan, R., Mchenry, M.E.: Structure and magnetic properties of rf thermally plasma synthesized Mn and Mn–Zn ferrite nanoparticles. J. Appl. Phys. 93, 7495 (2003)

    Article  ADS  Google Scholar 

  5. Sugimoto, M.: The past, present, and future of ferrites. J. Am. Ceram. Soc. 82, 269 (1999)

    Article  Google Scholar 

  6. Ghazanfar, U., Siddiqi, S.A., Abbas, G.: Structural analysis of the Mn–Zn ferrites using XRD technique. Mater. Sci. Eng. B 118, 84 (2005)

    Article  Google Scholar 

  7. Ott, G., Wrba, J., Lucke, R.: Recent developments of Mn–Zn ferrites for high permeability applications. J. Magn. Magn. Mater. 254, 535 (2003)

    Article  ADS  Google Scholar 

  8. Yan, Q., Gambino, R.J., Sampath, S., Lewis, L.H., Li, L., Baumberger, E., Vaidya, A., Xiong, H.: Effects of zinc loss on the magnetic properties of plasma-sprayed MnZn ferrites. Acta Mater. 52, 3347 (2004)

    Article  Google Scholar 

  9. Hirota, K., Aoyama, T., Enomoto, S., Yoshinaka, M., Yamaguchi, O.: Microstructures and magnetic and electric properties of low-temperature sintering Mn-Zn ferrites without and with addition of lithium borosilicate glass. J. Magn. Magn. Mater. 205, 283 (1999)

    Article  ADS  Google Scholar 

  10. Xi, G., Yang, Li., Maixi, Lu.: Study on preparation of nanocrystalline ferrites using spent alkaline Zn–Mn batteries. Mater. Lett. 60, 3582 (2006)

    Article  Google Scholar 

  11. Kanemaru, T., Iwasaki, T., Suda, S., Kitagawa, T.: Preparation of ferrite from used dry cells . United States Patent 5,707,541 (1998)

  12. Kashyap, S.C.: Applied electromagnetic conference (AEMC) 2009, 14-16 Dec. Kolkata IEEExplore doi:10.1109/AEMC.2009.5430602

  13. Geetanjali, C.L., Dube, S.C., Kashyap, R.K. Kotnala: Effect of microwave processing on polycrystalline hard barium hexaferrite. J. Supercond. Novel Mag. 24, 567 (2011)

    Article  Google Scholar 

  14. Dube, C.L., Kashyap, S.C., Dube, D.C., Agarwal, D.K.: Growth of Si0.75Ge0.25 alloy nanowires in a separated H-field by microwave processing. Appl. Phys. Lett. 94, 213107 (2009)

    Article  ADS  Google Scholar 

  15. Xiao, L., Zhou, T., Meng, J.: Hydrothermal synthesis of Mn–Zn ferrites from spent alkaline Zn–Mn batteries. Particuology 491, 7 (2009)

    Google Scholar 

  16. Cullity, B.D.: Elements of X-ray diffraction. Addisson Wesely, Calfornia (1978)

    Google Scholar 

  17. Tsakaloudi, V., PapaZoglou, E., Zaspalis, V.T.: Microwave firing of MnZn-ferrites. Mater. Sci. Eng. B 106, 289 (2004)

    Article  Google Scholar 

  18. Xuan, Y., Li, Q., Yang, G.: Synthesis and magnetic properties of Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 312, 464 (2007)

    Article  ADS  Google Scholar 

  19. Goya, G.F., Berquo, T.S., Fonseca, F.C., Morales, M.P.: Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94(5), 3520 (2003)

  20. Giri, J., Pradhan, P., Somani, V., Chelawat, H., Chhatre, S., Banerjee, R., Bahadur, D.: Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-x B x Fe2 O 4, B = Mn, Co (x = 0 – 1)] for biomedical applications. J. Magn. Magn. Mater. 320, 724 (2008)

  21. Jeppson, P., Sailer, R., Jarabek, E., Sandstrom, J., Anderson, B., Bremer, M., Grier, D.G., Schulz, D.L., Caruso, A.N., Payne, S.A., Eames, P., Tondara, M., He, H., Chrisey, D.B.: Cobalt ferrite nanoparticles: achieving the superparamagnetic limit by chemical reduction. J. Appl. Phys. 100, 114324 (2006)

  22. Vejpravova, J., Sechovsky, V., Plocek, J., Niznansky, D., Hutlova, A.: Magnetism of sol-gel fabricated CoFe2O4/SiO2 nanocomposites. J. Appl. Phys. 97, 124304 (2005)

    Article  ADS  Google Scholar 

  23. Hessien, M.M., Rashad, M.M., El-Barawy, K., Ibrahim, I.A.: Influence of manganese substitution and annealing temperature on the formation, microstructure and magnetic properties of Mn–Zn ferrites. J. Magn. Magn. Mater. 320, 1615 (2008)

    Article  ADS  Google Scholar 

  24. Wang, J., Zhang, K., Peng, Z., Chen, Q.: Magnetic properties improvement in Fe3O4 nanoparticles grown under magnetic fields. J. Cryst. Growth 266, 500 (2004)

    Article  ADS  Google Scholar 

  25. Teja, A.S., Koh, P.-Y.: Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneetha Thota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thota, S., Kashyap, S.C., Gupta, H.C. et al. Improved Magnetic Properties of Microwave-Processed Mn0.5Zn0.5Fe2O4 Nanoparticles. J Supercond Nov Magn 28, 131–136 (2015). https://doi.org/10.1007/s10948-014-2820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2820-9

Keywords

Navigation