Skip to main content
Log in

Conductivity Extent in Hydrothermally Synthesized Nanocrystalline Ceria

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The synthesis of cerium oxide (CeO2) nanoparticles through composite mediated hydrothermal approach is reported. A composite of sodium hydroxide and potassium hydroxide was used as precursor with cerium nitrate as the raw material. With the help of X-ray diffraction (XRD), we observed that the crystal structure of prepared ceria nanoparticles is cubic. Scanning electron microscopy (SEM) has been utilized to study the surface morphology of the material. Conductivity of synthesized cerium oxide was measured by standard two probes method. Cerium oxide is nonconductive at room temperature, but when we increase the temperature, it becomes conductive. It is observed that ionic conductivity depends on nature of nanoparticles and temperature. The oxygen ions conductivity was 2.32 ×10−8 S cm−1 at 300 ± 5 C. In the region of 300 ± 5 to 400 ± 5 C, the conductivity increases slightly. Above 400 ± 5 C, it increases rapidly and gave a maximum value of 1.01 × 10 −7 S cm−1 at 700 ± 5 C. Also, the effect of applied frequency on the conductivity, dielectric constant, and dissipation factor was observed as a function of temperature. The studied material is a strong potential candidate for electrolyte material in intermediate temperature solid oxide fuel cells (ITSOFC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adachi, G., Imanaka, N., Kang, Z.C. (eds): Binary rare earth oxides. Kluwer Academic Publishers, Dordrecht (2007)

  2. Anis-ur-Rehman, M., Saleemi, A.S., Abdullah, A.: J. Alloys Comp. 579, 450–456 (2013)

    Article  Google Scholar 

  3. Yan, Z., Yan, C.: J. Mater. Chem. 18, 5046–5059 (2008)

    Article  Google Scholar 

  4. Michael, C., Tucker, C.: J. Power Sources 195, 4570–4582 (2010)

    Article  Google Scholar 

  5. Anis-ur-Rehman, M., Abdullah, A.: J. Supercond, Nov. Magn. 24, 1095–1098 (2011)

    Article  Google Scholar 

  6. Steels, B.C.H., Takahashi, T.: High conductivity solid ionic conductors. World Scientific, Singapore (1989)

    Google Scholar 

  7. Saleemi, A.S., Abdullah, A., Anis-ur-Rehman, M.: J. Supercond. Nov. Magn. 26, 1065–1069 (2013)

    Article  Google Scholar 

  8. Inaba, H., Tagawa, H.: Solid State Ionics. 83, 1–16 (1996)

    Article  Google Scholar 

  9. Shen, G., Wang, Q., Wang, Z., Yunfa, C.: Mat. Lett. 65, 1211–1214 (2011)

    Article  Google Scholar 

  10. Hongyun, J., Wang, N., Liang, X., Shuen, H.: Mat. Lett. 64, 1254–1256 (2010)

    Article  Google Scholar 

  11. Quan, Y., Hao-Hong, D., Le-Le, L., Ling-Dong, S., Ya-Wen, Z., Chun-Hua, Y.: J. Colloid. Interface Sci. 335, 151–167 (2009)

    Article  Google Scholar 

  12. Sehgal, A., Lalatonne, Y., Berret, J. F., Morvan, M.: Langmuir. 21, 9359–9364 (2005)

    Article  Google Scholar 

  13. Grasset, F., Marchand, R., Marie, A.M., Fauchadour, D., Fajardie, F.: J. Colloid. Inter. Sci. 299, 726–732 (2006)

    Article  Google Scholar 

  14. Masui, T., Hirai, H., Imanaka, N., Adachi, G.: J. Mat. Sci. Lett. 21, 489–491 (2002)

    Article  Google Scholar 

  15. Yan, Z, Yan, J.: Mater. Chem. 18, 5046–5059 (2008)

    Article  Google Scholar 

  16. Andreas, T., Rainer, B.: J. Electroceram. 7, 169–177 (2001)

    Article  Google Scholar 

  17. Jing-ru, B., Qing, W., Yan-Zhen, W., Tong, L.: J. Fuel. Chem. Tech. 39, 489–494 (2011)

    Article  Google Scholar 

  18. Reddy, T.G., Kumar, B.R., Rao, T.S., Ahmad, J.A.: Int. J. App. Engg. Res. 6, 571–580 (2011)

    Google Scholar 

  19. Ansu, K.R., Singh, A., Kumari, K., Nath, K.A., Prasad, A., Prasad, K.: ISRN Ceramics, pp. 854831, 2012

  20. Shih, C.J., Chen, Y.J., Hon, M.H.: Mat. Chem. Phys. 121, 99–102 (2010)

    Article  Google Scholar 

  21. Chen, H.I., Chang, H.Y.: Ceram. Inter. 31, 795–802 (2005)

    Article  Google Scholar 

  22. Hodge, I.M., Ingram, M.D., West, A.R.: J. Electroanal. Chem. 74, 125–143 (1976)

    Article  Google Scholar 

  23. Jin, H., Wang, N., Xu, L., Hou, S.: Mat. Lett. 64, 1254–1256 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The assistance of Mr. M. Mubeen, Mr. M. Saqib, and Ms. Fatima-Tuz-Zahra is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anis-ur-Rehman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anis-ur-Rehman, M., Umer, M.A., Ahmed, S. et al. Conductivity Extent in Hydrothermally Synthesized Nanocrystalline Ceria. J Supercond Nov Magn 28, 989–993 (2015). https://doi.org/10.1007/s10948-014-2744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2744-4

Keywords

Navigation