Skip to main content
Log in

Magnetotransport Properties, Thermally Activated Flux Flow, and Activation Energies in Ba(Fe0.95 Ni0.05)2As2 and Ba(Fe0.94 Ni0.06)2As2 Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Thermally assisted flux flow (TAFF) is studied in bulk Ba(Fe0.95 Ni0.05)2As2 (T c = 20.4 K) and Ba(Fe0.94 Ni0.06)2As2 (T c = 18.5 K) superconductors by transport measurements in magnetic fields up to 18 T. In addition, the upper critical field μ 0 H c2(0) and the coherence length ξ(0) are determined. The data is analyzed in the context of the widely accepted Anderson-Kim model and Fischer model. The onset TAFF temperature and the crossover temperature T x from TAFF to flux flow are determined. The flux pinning activation energy U is modeled as U(T,H) = U 0(H) f(t) where f(t) is some temperature function and the modified Anderson-Kim model is used to extract U 0, which is graphed as a function of magnetic field μ 0 H near T c. The resistive regime is observed, which is caused by fluctuations. Fisher’s model is applied to determine the glass melting transition temperature; it occurs in the upper TAFF state and not in the expected zero-resistivity vortex solid regime. Furthermore, the resistive transition width is proportional to μ 0 H, in contrast to Tinkham’s prediction. The H-T phase diagram is drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tanatar, M.A., et al.: Phys. Rev. B 79, 094507 (2009)

    Article  ADS  Google Scholar 

  2. Jaroszynski, J., et al.: Phys. Rev. B 78, 064511 (2008)

    Article  ADS  Google Scholar 

  3. Chen, Y.L., et al.: Supercond. Sci. Technol. 21, 115014 (2008)

    Article  ADS  Google Scholar 

  4. Khasanov, A., et al.: J. Phys. -Condens. Mat. 23, 202201 (2011)

    Article  ADS  Google Scholar 

  5. Celentano, G., et al.: IEEE Trans. Appl. Supercond. 4(3) (2011)

  6. Sefat, A.S., et al.: Phys. Rev. Lett. 101, 117004 (2008)

    Article  ADS  Google Scholar 

  7. Rotter, M., et al.: Phys. Rev. B 78, 020503(R) (2008)

    Article  ADS  Google Scholar 

  8. Yamamoto, A., et al.: Appl. Phys. Lett. 94, 062511 (2009)

    Article  ADS  Google Scholar 

  9. Wang, M., et al.: Phys. Rev. B 81, 174524 (2010)

    Article  ADS  Google Scholar 

  10. Chi, S., et al.: Phys. Rev. Lett. 102, 107006 (2009)

    Article  ADS  Google Scholar 

  11. Li, S., et al.: Phys. Rev. B 79, 174527 (2009)

    Article  ADS  Google Scholar 

  12. Werthamer, N.R., et al.: Phys. Rev. 147, 295 (1966)

    Article  ADS  Google Scholar 

  13. Tinkham, M.: Introduction to Superconductivity, 2nd edn. p. 135. McGraw-Hill, New York (1996)

  14. Gasparov, V.A., et al.: JETP Lett. 93, 667–672 (2011)

    Article  ADS  Google Scholar 

  15. Gasparov, V.A., et al.: JETP Lett. 93, 746 (2011)

    Google Scholar 

  16. Sun, D.L., et al.: Phys. Rev. B 80, 144515 (2009)

    Article  ADS  Google Scholar 

  17. Tinkham, M.: Phys. Rev. Lett. 61, 1659 (1988)

    Article  ADS  Google Scholar 

  18. Anderson, P.W.: Phys. Rev. Lett. 9, 309 (1962)

    Article  ADS  Google Scholar 

  19. Anderson, P.W., Kim, Y.B.: Rev. Mod. Phys. 36, 39 (1964)

    Article  ADS  Google Scholar 

  20. Brandt, E.H.: Physica B 169, 91–98 (1991)

    Article  ADS  Google Scholar 

  21. Fisher, M.P.A.: Phys. Rev. Lett. 62, 1415 (1989)

    Article  ADS  Google Scholar 

  22. Koch, R.H., et al.: Phys. Rev. Lett. 63, 1511 (1989)

    Article  ADS  Google Scholar 

  23. Fisher, D.S., et al.: Phys. Rev. B 43, 130 (1991)

    Article  ADS  Google Scholar 

  24. Patnaik, S., et al.: Phys. Rev. B 70, 064503 (2003)

    Article  ADS  Google Scholar 

  25. Batlogg, B., et al.: Flux dynamics and electronic anisotropy in high-temperature superconductor. In: Fukuyama, H., et al. (eds.) Strong Correlation and Superconductivity, vol. 89. Springer Series in Physics, Berlin (1989)

  26. Nikolo, M., et al.: Magneto-transport properties and thermally activated flux flow in Ba(Fe0.91Co0.09)2As2 superconductor, to be published in 2014

  27. Resnick, D.J., et al.: Phys. Rev. Lett. 47, 1542 (1981)

    Article  ADS  Google Scholar 

  28. Abraham, D.W., et al.: Phys. Rev. 26, 5268 (1982)

    Article  ADS  Google Scholar 

  29. de Gennes, P.G.: Rev. Mod. Phys. 36, 225 (1964)

    Article  ADS  Google Scholar 

  30. Woo, K.C., et al.: Phys. Rev. Lett. 63, 1877 (1989)

    Article  ADS  Google Scholar 

  31. Shi, D., et al.: Supercond. Sci. Tech. 3, 289 (1990)

    Article  ADS  Google Scholar 

  32. Palstra, T.T.M.: Phys. Rev. Lett. 61, 1662 (1988)

    Article  ADS  Google Scholar 

  33. Patnaik, S., et al.: Phys. Rev. B 70, 064503 (2004)

    Article  ADS  Google Scholar 

  34. Kim, D.H., et al.: Phys. Rev. B 42, 6249 (1990)

    Article  ADS  Google Scholar 

  35. Malozemoff, A.P., et al.: Flux creep and the crossover to flux flow in the resistivity of high temperature superconductors. In: Fukuyama, H., et al. (eds.) Strong Correlations and Superconductivity, vol. 89. Springer Series in Physics, Berlin (1989)

  36. Zeldov, et al.: Phys. Rev. Lett. 65, 278 (1990)

  37. Ferrari, M.J., et al.: Phys. Rev. Lett. 64, 72 (1990)

    Article  ADS  Google Scholar 

  38. Inosov, D.S., et al.: Phys. Rev. B 81, 014513 (2010)

    Article  ADS  Google Scholar 

  39. Prozorov, R., et al.: Phys. Rev. B 78, 224506 (2008)

    Article  ADS  Google Scholar 

  40. Shen, B., et al.: Phys. Rev. B 81, 014503 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work at The National High Magnetic Field Laboratory was supported by NSF DMR-1006584 and DMR-1306785, the State of Florida, and by NHMFL which is supported by the National Science Foundation under DMR-1157490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nikolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolo, M., Shi, X., Jiang, J. et al. Magnetotransport Properties, Thermally Activated Flux Flow, and Activation Energies in Ba(Fe0.95 Ni0.05)2As2 and Ba(Fe0.94 Ni0.06)2As2 Superconductors. J Supercond Nov Magn 27, 1983–1990 (2014). https://doi.org/10.1007/s10948-014-2550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2550-z

Keywords

Navigation