Skip to main content
Log in

Study of Defect Modes in 1d Photonic Crystal Structure Containing High and Low T c Superconductor as a Defect Layer

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The present paper describes the study of defect modes in a one-dimensional photonic crystal (1d-PC) containing a high and low temperature superconductor as a defect layer at different temperatures below the superconducting transition temperature (T c ). Since the refractive index of the superconducting material is dependent on the penetration depth, which depends on the temperature of the superconducting material, hence by changing the temperature of the superconducting material its refractive index can also be changed. Analysis of the transmission spectra of defect modes in the reflection band of 1d-PC structure shows a shift in the wavelength peak of the defect mode. The shift in peak is different for different superconducting materials and it increases with the increase in temperature whether the defect layer is high T c or low T c superconductors. We also study the presence two defect layers in a 1d-PC structure, one with high T c and other with a low T c superconductor. Further, the effect of variation in the thickness of the defect layer on the defect modes of the PC structure has also been studied In order to obtain the transmission (reflection) spectra of a 1d-PC structure with a defect, we employ the transfer matrix method (TMM). This property of the defective PC structure can be exploited in designing the temperature sensor and narrow optical filters. Further, this tunable feature of superconductor photonic crystal has technical use in the superconducting electronics and photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Yablonovitch, E.: Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  2. Joannopoulos, J.D., Villeneuve, P., Fan, S.: Photonic crystals: putting a new twist on light. Nature 386, 143 (1997)

    Article  ADS  Google Scholar 

  3. Yuan, K., Zheng, X., Li, C.-L., She, W.L.: Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index. Phys. Rev. E 71, 066604 (2005)

    Article  ADS  Google Scholar 

  4. Srivastava, S.K., Ojha, S.P.: Operating characteristics of an optical filter using metallic photonic band gap materials. Microw. Opt. Technol. Lett. 35, 68–71 (2002)

    Article  Google Scholar 

  5. Weiss, S.M., Haurylau, M., Fauchet, P.M.: Tunable photonic bandgap structures for optical interconnects. Opt. Mater. 27, 740–745 (2005)

    Article  ADS  Google Scholar 

  6. Srivastava, S.K., Ojha, S.P.: Broadband optical reflector based on Si/SiO2 one-dimensional graded photonic crystal structure. J. Mod. Opt. 56, 33–40 (2009)

    Article  ADS  Google Scholar 

  7. Gerken, M., Miller, D.A.B.: Wavelength demultiplexer using the spatial dispersion of multilayer thin film structures. IEEE Photonics Technol. Lett. 15, 1097–1099 (2003)

    Article  ADS  Google Scholar 

  8. Habibiyan, H., Ghafoori-Fard, H., Rostami, A.: Tunable alloptical photonic crystal channel drop filter for DWDM systems. J. Opt. A, Pure Appl. Opt. 11, 065102 (2009)

    Article  ADS  Google Scholar 

  9. Srivastava, S.K., Ojha, S.P.: Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerene film. Prog. Electromagn. Res. 74, 181–194 (2007)

    Article  Google Scholar 

  10. Arkhipkin, V.G., et al.: Electo and magneto optical switching of defect modes in one-dimensional photonic crystal. J. Exp. Theor. Phys. 112, 577–587 (2011)

    Article  ADS  Google Scholar 

  11. Yoshino, K., Shimoda, Y., Kawagishi, Y., Nakayama, K., Ozaki, M.: Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett. 75, 932–934 (1999)

    Article  ADS  Google Scholar 

  12. Srivastava, S.K., Upadhyay, M., Awasthi, S.K., Ojha, S.P.: Tunable reflection bands and defect modes in one-dimensional tilted photonic crystal structure. Opt. Photonics J. 3A, 230–236 (2012)

    Article  Google Scholar 

  13. Wu, C.-J., Wang, Z.H.: Properties of defect modes in one-dimensional photonic crystals. Prog. Electromagn. Res. 103, 169–184 (2010)

    Article  Google Scholar 

  14. Gharaati, A., Azarshab, H.: Characterization of defect modes in one dimensional ternary metallo-dielectric nanolayered photonic crystal. Prog. Electromagn. Res. B 37, 125–141 (2013)

    Article  Google Scholar 

  15. Lee, H.M., Wu, J.C.: Transmittance spectra in one dimensional superconductor–dielectric photonic crystal. J. Appl. Phys. 107, 09E149 (2010)

    Google Scholar 

  16. Ooi, C.H.R., Kam, C.H.: Echo and ringing of optical pulse in finite photonic crystal with superconductor and dispersive dielectric. J. Opt. Soc. Am. B.27, 458–463 (2010)

    Article  ADS  Google Scholar 

  17. Hsu, H.T., Kuo, F.Y., Wu, C.J.: Optical properties of a high-temperature superconductor operating in near zero-permittivity region. J. Appl. Phys. 107, 053912 (2010)

    Article  ADS  Google Scholar 

  18. Srivastava, S.K., Awasthi, S.K.: Broadening of photonic band gap in one-dimensional magnetic star waveguide structure. J. Supcond. Novel Mag. 25, 883–892 (2012)

    Article  Google Scholar 

  19. Aly, A.H., Ryu, S.W., Hsu, H.T., Wu, C.J.: THz transmittance in one-dimensional superconducting nanomaterial dielectric superlattice. Mater. Chem. Phys. 113, 382–384 (2009)

    Article  Google Scholar 

  20. Yeh, P.: Optical Waves in Layered Media. Wiley, New York (1988)

    Google Scholar 

  21. Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  22. Tinkham, M.: Introduction to Superconductivity, 2nd edn. McGraw-Hill, New York (1996)

    Google Scholar 

  23. Wu, C.J., Chen, M.S., Yang, T.J.: Photonic band structure for a superconductor–dielectric superlattice. Physica C, Supercond. 432, 133–139 (2005)

    Article  ADS  Google Scholar 

  24. Ooi, C.H.R., Yeung, T.C.A., Kam, C.H., Lim, T.K.: Photonic band gap in a superconductor–dielectric superlattice. Phys. Rev. B.61, 5920–5923 (2000)

    ADS  Google Scholar 

  25. Marouchkine, A.: Room Temperature Superconductivity. Cambridge International Science Publishing, UK (2004)

    Google Scholar 

Download references

Acknowledgements

The author is thankful to Amity Institute of Applied Sciences, Amity University, Noida, for providing the necessary facility for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, S.K. Study of Defect Modes in 1d Photonic Crystal Structure Containing High and Low T c Superconductor as a Defect Layer. J Supercond Nov Magn 27, 101–114 (2014). https://doi.org/10.1007/s10948-013-2274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2274-5

Keywords

Navigation